| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1loopgruspgr.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 2 |
|
1loopgruspgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 3 |
|
1loopgruspgr.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 4 |
|
1loopgruspgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 5 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 7 |
4
|
rneqd |
⊢ ( 𝜑 → ran ( iEdg ‘ 𝐺 ) = ran { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 8 |
|
rnsnopg |
⊢ ( 𝐴 ∈ 𝑋 → ran { 〈 𝐴 , { 𝑁 } 〉 } = { { 𝑁 } } ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ran { 〈 𝐴 , { 𝑁 } 〉 } = { { 𝑁 } } ) |
| 10 |
6 7 9
|
3eqtrd |
⊢ ( 𝜑 → ( Edg ‘ 𝐺 ) = { { 𝑁 } } ) |