| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1loopgruspgr.v |
⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 2 |
|
1loopgruspgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 3 |
|
1loopgruspgr.n |
⊢ ( 𝜑 → 𝑁 ∈ 𝑉 ) |
| 4 |
|
1loopgruspgr.i |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 } 〉 } ) |
| 5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 6 |
3 1
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) |
| 7 |
|
dfsn2 |
⊢ { 𝑁 } = { 𝑁 , 𝑁 } |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → { 𝑁 } = { 𝑁 , 𝑁 } ) |
| 9 |
8
|
opeq2d |
⊢ ( 𝜑 → 〈 𝐴 , { 𝑁 } 〉 = 〈 𝐴 , { 𝑁 , 𝑁 } 〉 ) |
| 10 |
9
|
sneqd |
⊢ ( 𝜑 → { 〈 𝐴 , { 𝑁 } 〉 } = { 〈 𝐴 , { 𝑁 , 𝑁 } 〉 } ) |
| 11 |
4 10
|
eqtrd |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝑁 , 𝑁 } 〉 } ) |
| 12 |
5 2 6 6 11
|
uspgr1e |
⊢ ( 𝜑 → 𝐺 ∈ USPGraph ) |