Metamath Proof Explorer
Description: Two times a number. (Contributed by NM, 18-May-1999) (Revised by Mario
Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Assertion |
1p1times |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
2 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
3 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
4 |
3 3
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
5 |
1 2 1 4
|
joinlmuladdmuld |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |