| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
| 2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
| 3 |
|
fun0 |
⊢ Fun ∅ |
| 4 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
| 5 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 |
| 6 |
4 5
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 1 |
| 7 |
6
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 1 ) |
| 8 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
| 9 |
7 8
|
eqtri |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ |
| 10 |
9
|
reseq2i |
⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) |
| 11 |
|
res0 |
⊢ ( 𝑃 ↾ ∅ ) = ∅ |
| 12 |
10 11
|
eqtri |
⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 13 |
12
|
cnveqi |
⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ∅ |
| 14 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
| 15 |
13 14
|
eqtri |
⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
| 16 |
15
|
funeqi |
⊢ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ∅ ) |
| 17 |
3 16
|
mpbir |
⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |