| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-inr | ⊢ inr  =  ( 𝑥  ∈  V  ↦  〈 1o ,  𝑥 〉 ) | 
						
							| 2 |  | opeq2 | ⊢ ( 𝑥  =  𝑋  →  〈 1o ,  𝑥 〉  =  〈 1o ,  𝑋 〉 ) | 
						
							| 3 |  | elex | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  V ) | 
						
							| 4 |  | opex | ⊢ 〈 1o ,  𝑋 〉  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  〈 1o ,  𝑋 〉  ∈  V ) | 
						
							| 6 | 1 2 3 5 | fvmptd3 | ⊢ ( 𝑋  ∈  𝑉  →  ( inr ‘ 𝑋 )  =  〈 1o ,  𝑋 〉 ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑋  ∈  𝑉  →  ( 1st  ‘ ( inr ‘ 𝑋 ) )  =  ( 1st  ‘ 〈 1o ,  𝑋 〉 ) ) | 
						
							| 8 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 9 |  | op1stg | ⊢ ( ( 1o  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ( 1st  ‘ 〈 1o ,  𝑋 〉 )  =  1o ) | 
						
							| 10 | 8 9 | mpan | ⊢ ( 𝑋  ∈  𝑉  →  ( 1st  ‘ 〈 1o ,  𝑋 〉 )  =  1o ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( 𝑋  ∈  𝑉  →  ( 1st  ‘ ( inr ‘ 𝑋 ) )  =  1o ) |