| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-inr |  |-  inr = ( x e. _V |-> <. 1o , x >. ) | 
						
							| 2 |  | opeq2 |  |-  ( x = X -> <. 1o , x >. = <. 1o , X >. ) | 
						
							| 3 |  | elex |  |-  ( X e. V -> X e. _V ) | 
						
							| 4 |  | opex |  |-  <. 1o , X >. e. _V | 
						
							| 5 | 4 | a1i |  |-  ( X e. V -> <. 1o , X >. e. _V ) | 
						
							| 6 | 1 2 3 5 | fvmptd3 |  |-  ( X e. V -> ( inr ` X ) = <. 1o , X >. ) | 
						
							| 7 | 6 | fveq2d |  |-  ( X e. V -> ( 1st ` ( inr ` X ) ) = ( 1st ` <. 1o , X >. ) ) | 
						
							| 8 |  | 1oex |  |-  1o e. _V | 
						
							| 9 |  | op1stg |  |-  ( ( 1o e. _V /\ X e. V ) -> ( 1st ` <. 1o , X >. ) = 1o ) | 
						
							| 10 | 8 9 | mpan |  |-  ( X e. V -> ( 1st ` <. 1o , X >. ) = 1o ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( X e. V -> ( 1st ` ( inr ` X ) ) = 1o ) |