Metamath Proof Explorer


Theorem 2al2imi

Description: Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Hypothesis 2al2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 2al2imi ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥𝑦 𝜓 → ∀ 𝑥𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2al2imi.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 al2imi ( ∀ 𝑦 𝜑 → ( ∀ 𝑦 𝜓 → ∀ 𝑦 𝜒 ) )
3 2 al2imi ( ∀ 𝑥𝑦 𝜑 → ( ∀ 𝑥𝑦 𝜓 → ∀ 𝑥𝑦 𝜒 ) )