Metamath Proof Explorer


Theorem 2euswapv

Description: A condition allowing to swap an existential quantifier and a unique existential quantifier. Version of 2euswap with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Apr-2004) (Revised by Gino Giotto, 22-Aug-2023)

Ref Expression
Assertion 2euswapv ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥𝑦 𝜑 → ∃! 𝑦𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 excomim ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦𝑥 𝜑 )
2 1 a1i ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦𝑥 𝜑 ) )
3 2moswapv ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑦𝑥 𝜑 ) )
4 2 3 anim12d ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) → ( ∃ 𝑦𝑥 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ) )
5 df-eu ( ∃! 𝑥𝑦 𝜑 ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) )
6 df-eu ( ∃! 𝑦𝑥 𝜑 ↔ ( ∃ 𝑦𝑥 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) )
7 4 5 6 3imtr4g ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥𝑦 𝜑 → ∃! 𝑦𝑥 𝜑 ) )