Metamath Proof Explorer


Theorem 2euswapv

Description: A condition allowing to swap an existential quantifier and a unique existential quantifier. Version of 2euswap with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Apr-2004) (Revised by Gino Giotto, 22-Aug-2023)

Ref Expression
Assertion 2euswapv
|- ( A. x E* y ph -> ( E! x E. y ph -> E! y E. x ph ) )

Proof

Step Hyp Ref Expression
1 excomim
 |-  ( E. x E. y ph -> E. y E. x ph )
2 1 a1i
 |-  ( A. x E* y ph -> ( E. x E. y ph -> E. y E. x ph ) )
3 2moswapv
 |-  ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) )
4 2 3 anim12d
 |-  ( A. x E* y ph -> ( ( E. x E. y ph /\ E* x E. y ph ) -> ( E. y E. x ph /\ E* y E. x ph ) ) )
5 df-eu
 |-  ( E! x E. y ph <-> ( E. x E. y ph /\ E* x E. y ph ) )
6 df-eu
 |-  ( E! y E. x ph <-> ( E. y E. x ph /\ E* y E. x ph ) )
7 4 5 6 3imtr4g
 |-  ( A. x E* y ph -> ( E! x E. y ph -> E! y E. x ph ) )