Metamath Proof Explorer


Theorem 2moswapv

Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Version of 2moswap with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Apr-2004) (Revised by Gino Giotto, 22-Aug-2023) Factor out common proof lines with moexexvw . (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2moswapv
|- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ y E. y ph
2 1 nfmov
 |-  F/ y E* x E. y ph
3 nfe1
 |-  F/ x E. x ( E. y ph /\ ph )
4 3 nfmov
 |-  F/ x E* y E. x ( E. y ph /\ ph )
5 1 2 4 moexexlem
 |-  ( ( E* x E. y ph /\ A. x E* y ph ) -> E* y E. x ( E. y ph /\ ph ) )
6 5 expcom
 |-  ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ( E. y ph /\ ph ) ) )
7 19.8a
 |-  ( ph -> E. y ph )
8 7 pm4.71ri
 |-  ( ph <-> ( E. y ph /\ ph ) )
9 8 exbii
 |-  ( E. x ph <-> E. x ( E. y ph /\ ph ) )
10 9 mobii
 |-  ( E* y E. x ph <-> E* y E. x ( E. y ph /\ ph ) )
11 6 10 syl6ibr
 |-  ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) )