Metamath Proof Explorer


Theorem 2moswap

Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2moswapv when possible. (Contributed by NM, 10-Apr-2004) (New usage is discouraged.)

Ref Expression
Assertion 2moswap
|- ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ y E. y ph
2 1 moexex
 |-  ( ( E* x E. y ph /\ A. x E* y ph ) -> E* y E. x ( E. y ph /\ ph ) )
3 2 expcom
 |-  ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ( E. y ph /\ ph ) ) )
4 19.8a
 |-  ( ph -> E. y ph )
5 4 pm4.71ri
 |-  ( ph <-> ( E. y ph /\ ph ) )
6 5 exbii
 |-  ( E. x ph <-> E. x ( E. y ph /\ ph ) )
7 6 mobii
 |-  ( E* y E. x ph <-> E* y E. x ( E. y ph /\ ph ) )
8 3 7 syl6ibr
 |-  ( A. x E* y ph -> ( E* x E. y ph -> E* y E. x ph ) )