Metamath Proof Explorer


Theorem 2moswap

Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2moswapv when possible. (Contributed by NM, 10-Apr-2004) (New usage is discouraged.)

Ref Expression
Assertion 2moswap ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑦𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfe1 𝑦𝑦 𝜑
2 1 moexex ( ( ∃* 𝑥𝑦 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ∃* 𝑦𝑥 ( ∃ 𝑦 𝜑𝜑 ) )
3 2 expcom ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑦𝑥 ( ∃ 𝑦 𝜑𝜑 ) ) )
4 19.8a ( 𝜑 → ∃ 𝑦 𝜑 )
5 4 pm4.71ri ( 𝜑 ↔ ( ∃ 𝑦 𝜑𝜑 ) )
6 5 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( ∃ 𝑦 𝜑𝜑 ) )
7 6 mobii ( ∃* 𝑦𝑥 𝜑 ↔ ∃* 𝑦𝑥 ( ∃ 𝑦 𝜑𝜑 ) )
8 3 7 syl6ibr ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑦𝑥 𝜑 ) )