Metamath Proof Explorer


Theorem 2exopprim

Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023)

Ref Expression
Assertion 2exopprim ( ∃ 𝑎𝑏 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝜑 ) → ∃ 𝑎𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 oppr ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) → ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) )
2 1 el2v ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } )
3 2 eqcomd ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } )
4 3 eqcoms ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } )
5 4 anim1i ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝜑 ) → ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ 𝜑 ) )
6 5 2eximi ( ∃ 𝑎𝑏 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝜑 ) → ∃ 𝑎𝑏 ( { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ∧ 𝜑 ) )