Metamath Proof Explorer


Theorem 2exopprim

Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023)

Ref Expression
Assertion 2exopprim
|- ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) )

Proof

Step Hyp Ref Expression
1 oppr
 |-  ( ( a e. _V /\ b e. _V ) -> ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) )
2 1 el2v
 |-  ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } )
3 2 eqcomd
 |-  ( <. a , b >. = <. A , B >. -> { A , B } = { a , b } )
4 3 eqcoms
 |-  ( <. A , B >. = <. a , b >. -> { A , B } = { a , b } )
5 4 anim1i
 |-  ( ( <. A , B >. = <. a , b >. /\ ph ) -> ( { A , B } = { a , b } /\ ph ) )
6 5 2eximi
 |-  ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) )