| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oppr |  |-  ( ( a e. _V /\ b e. _V ) -> ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) ) | 
						
							| 2 | 1 | el2v |  |-  ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) | 
						
							| 3 | 2 | eqcomd |  |-  ( <. a , b >. = <. A , B >. -> { A , B } = { a , b } ) | 
						
							| 4 | 3 | eqcoms |  |-  ( <. A , B >. = <. a , b >. -> { A , B } = { a , b } ) | 
						
							| 5 | 4 | anim1i |  |-  ( ( <. A , B >. = <. a , b >. /\ ph ) -> ( { A , B } = { a , b } /\ ph ) ) | 
						
							| 6 | 5 | 2eximi |  |-  ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) ) |