Step |
Hyp |
Ref |
Expression |
1 |
|
oppr |
|- ( ( a e. _V /\ b e. _V ) -> ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) ) |
2 |
1
|
el2v |
|- ( <. a , b >. = <. A , B >. -> { a , b } = { A , B } ) |
3 |
2
|
eqcomd |
|- ( <. a , b >. = <. A , B >. -> { A , B } = { a , b } ) |
4 |
3
|
eqcoms |
|- ( <. A , B >. = <. a , b >. -> { A , B } = { a , b } ) |
5 |
4
|
anim1i |
|- ( ( <. A , B >. = <. a , b >. /\ ph ) -> ( { A , B } = { a , b } /\ ph ) ) |
6 |
5
|
2eximi |
|- ( E. a E. b ( <. A , B >. = <. a , b >. /\ ph ) -> E. a E. b ( { A , B } = { a , b } /\ ph ) ) |