| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( p = <. x , y >. -> ( p = <. a , b >. <-> <. x , y >. = <. a , b >. ) ) |
| 2 |
1
|
anbi1d |
|- ( p = <. x , y >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. x , y >. = <. a , b >. /\ ph ) ) ) |
| 3 |
2
|
2exbidv |
|- ( p = <. x , y >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) ) ) |
| 4 |
|
eqeq1 |
|- ( p = <. i , j >. -> ( p = <. a , b >. <-> <. i , j >. = <. a , b >. ) ) |
| 5 |
4
|
anbi1d |
|- ( p = <. i , j >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. i , j >. = <. a , b >. /\ ph ) ) ) |
| 6 |
5
|
2exbidv |
|- ( p = <. i , j >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) ) ) |
| 7 |
3 6
|
reuop |
|- ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) <-> E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) |
| 8 |
|
simpll |
|- ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> x e. X ) |
| 9 |
|
simplr |
|- ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> y e. X ) |
| 10 |
|
oppr |
|- ( ( x e. _V /\ y e. _V ) -> ( <. x , y >. = <. a , b >. -> { x , y } = { a , b } ) ) |
| 11 |
10
|
el2v |
|- ( <. x , y >. = <. a , b >. -> { x , y } = { a , b } ) |
| 12 |
11
|
anim1i |
|- ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( { x , y } = { a , b } /\ ph ) ) |
| 13 |
12
|
2eximi |
|- ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) |
| 14 |
13
|
adantr |
|- ( ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) |
| 15 |
14
|
adantl |
|- ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) |
| 16 |
|
nfv |
|- F/ a ( x e. X /\ y e. X ) |
| 17 |
|
nfe1 |
|- F/ a E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) |
| 18 |
|
nfcv |
|- F/_ a X |
| 19 |
|
nfe1 |
|- F/ a E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) |
| 20 |
|
nfv |
|- F/ a <. i , j >. = <. x , y >. |
| 21 |
19 20
|
nfim |
|- F/ a ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 22 |
18 21
|
nfralw |
|- F/ a A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 23 |
18 22
|
nfralw |
|- F/ a A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 24 |
17 23
|
nfan |
|- F/ a ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) |
| 25 |
16 24
|
nfan |
|- F/ a ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) |
| 26 |
|
nfv |
|- F/ a ( m e. X /\ n e. X ) |
| 27 |
25 26
|
nfan |
|- F/ a ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) |
| 28 |
|
nfv |
|- F/ a { m , n } = { x , y } |
| 29 |
|
nfv |
|- F/ b ( x e. X /\ y e. X ) |
| 30 |
|
nfe1 |
|- F/ b E. b ( <. x , y >. = <. a , b >. /\ ph ) |
| 31 |
30
|
nfex |
|- F/ b E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) |
| 32 |
|
nfcv |
|- F/_ b X |
| 33 |
|
nfe1 |
|- F/ b E. b ( <. i , j >. = <. a , b >. /\ ph ) |
| 34 |
33
|
nfex |
|- F/ b E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) |
| 35 |
|
nfv |
|- F/ b <. i , j >. = <. x , y >. |
| 36 |
34 35
|
nfim |
|- F/ b ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 37 |
32 36
|
nfralw |
|- F/ b A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 38 |
32 37
|
nfralw |
|- F/ b A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) |
| 39 |
31 38
|
nfan |
|- F/ b ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) |
| 40 |
29 39
|
nfan |
|- F/ b ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) |
| 41 |
|
nfv |
|- F/ b ( m e. X /\ n e. X ) |
| 42 |
40 41
|
nfan |
|- F/ b ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) |
| 43 |
|
nfv |
|- F/ b { m , n } = { x , y } |
| 44 |
|
vex |
|- m e. _V |
| 45 |
|
vex |
|- n e. _V |
| 46 |
|
vex |
|- a e. _V |
| 47 |
|
vex |
|- b e. _V |
| 48 |
44 45 46 47
|
preq12b |
|- ( { m , n } = { a , b } <-> ( ( m = a /\ n = b ) \/ ( m = b /\ n = a ) ) ) |
| 49 |
|
opeq1 |
|- ( i = m -> <. i , j >. = <. m , j >. ) |
| 50 |
49
|
eqeq1d |
|- ( i = m -> ( <. i , j >. = <. a , b >. <-> <. m , j >. = <. a , b >. ) ) |
| 51 |
50
|
anbi1d |
|- ( i = m -> ( ( <. i , j >. = <. a , b >. /\ ph ) <-> ( <. m , j >. = <. a , b >. /\ ph ) ) ) |
| 52 |
51
|
2exbidv |
|- ( i = m -> ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) ) ) |
| 53 |
49
|
eqeq1d |
|- ( i = m -> ( <. i , j >. = <. x , y >. <-> <. m , j >. = <. x , y >. ) ) |
| 54 |
52 53
|
imbi12d |
|- ( i = m -> ( ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) <-> ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) -> <. m , j >. = <. x , y >. ) ) ) |
| 55 |
|
opeq2 |
|- ( j = n -> <. m , j >. = <. m , n >. ) |
| 56 |
55
|
eqeq1d |
|- ( j = n -> ( <. m , j >. = <. a , b >. <-> <. m , n >. = <. a , b >. ) ) |
| 57 |
56
|
anbi1d |
|- ( j = n -> ( ( <. m , j >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. a , b >. /\ ph ) ) ) |
| 58 |
57
|
2exbidv |
|- ( j = n -> ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) ) |
| 59 |
55
|
eqeq1d |
|- ( j = n -> ( <. m , j >. = <. x , y >. <-> <. m , n >. = <. x , y >. ) ) |
| 60 |
58 59
|
imbi12d |
|- ( j = n -> ( ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) -> <. m , j >. = <. x , y >. ) <-> ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) ) ) |
| 61 |
54 60
|
rspc2v |
|- ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) ) ) |
| 62 |
|
pm3.22 |
|- ( ( ( m e. X /\ n e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) |
| 63 |
62
|
3adant2 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) |
| 65 |
|
eqidd |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> <. m , n >. = <. m , n >. ) |
| 66 |
|
sbceq1a |
|- ( a = m -> ( ph <-> [. m / a ]. ph ) ) |
| 67 |
66
|
equcoms |
|- ( m = a -> ( ph <-> [. m / a ]. ph ) ) |
| 68 |
|
sbceq1a |
|- ( b = n -> ( [. m / a ]. ph <-> [. n / b ]. [. m / a ]. ph ) ) |
| 69 |
68
|
equcoms |
|- ( n = b -> ( [. m / a ]. ph <-> [. n / b ]. [. m / a ]. ph ) ) |
| 70 |
67 69
|
sylan9bb |
|- ( ( m = a /\ n = b ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) |
| 71 |
70
|
3ad2ant2 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) |
| 72 |
71
|
biimpa |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> [. n / b ]. [. m / a ]. ph ) |
| 73 |
64 65 72
|
jca32 |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) /\ ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) |
| 74 |
|
nfv |
|- F/ a <. m , n >. = <. m , n >. |
| 75 |
|
nfcv |
|- F/_ a n |
| 76 |
|
nfsbc1v |
|- F/ a [. m / a ]. ph |
| 77 |
75 76
|
nfsbcw |
|- F/ a [. n / b ]. [. m / a ]. ph |
| 78 |
74 77
|
nfan |
|- F/ a ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) |
| 79 |
|
nfv |
|- F/ b <. m , n >. = <. m , n >. |
| 80 |
|
nfsbc1v |
|- F/ b [. n / b ]. [. m / a ]. ph |
| 81 |
79 80
|
nfan |
|- F/ b ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) |
| 82 |
|
opeq12 |
|- ( ( a = m /\ b = n ) -> <. a , b >. = <. m , n >. ) |
| 83 |
82
|
eqeq2d |
|- ( ( a = m /\ b = n ) -> ( <. m , n >. = <. a , b >. <-> <. m , n >. = <. m , n >. ) ) |
| 84 |
66 68
|
sylan9bb |
|- ( ( a = m /\ b = n ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) |
| 85 |
83 84
|
anbi12d |
|- ( ( a = m /\ b = n ) -> ( ( <. m , n >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) |
| 86 |
85
|
adantl |
|- ( ( ( x e. X /\ y e. X ) /\ ( a = m /\ b = n ) ) -> ( ( <. m , n >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) |
| 87 |
78 81 86
|
spc2ed |
|- ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) -> ( ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) -> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) ) |
| 88 |
87
|
imp |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) /\ ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) -> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) |
| 89 |
|
pm2.27 |
|- ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> <. m , n >. = <. x , y >. ) ) |
| 90 |
73 88 89
|
3syl |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> <. m , n >. = <. x , y >. ) ) |
| 91 |
|
oppr |
|- ( ( m e. _V /\ n e. _V ) -> ( <. m , n >. = <. x , y >. -> { m , n } = { x , y } ) ) |
| 92 |
91
|
el2v |
|- ( <. m , n >. = <. x , y >. -> { m , n } = { x , y } ) |
| 93 |
90 92
|
syl6 |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> { m , n } = { x , y } ) ) |
| 94 |
93
|
ex |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ph -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> { m , n } = { x , y } ) ) ) |
| 95 |
94
|
com23 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) |
| 96 |
95
|
3exp |
|- ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 97 |
96
|
com24 |
|- ( ( m e. X /\ n e. X ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 98 |
61 97
|
syld |
|- ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 99 |
98
|
com13 |
|- ( ( x e. X /\ y e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 100 |
99
|
a1d |
|- ( ( x e. X /\ y e. X ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) ) |
| 101 |
100
|
imp42 |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) |
| 102 |
|
opeq1 |
|- ( i = n -> <. i , j >. = <. n , j >. ) |
| 103 |
102
|
eqeq1d |
|- ( i = n -> ( <. i , j >. = <. a , b >. <-> <. n , j >. = <. a , b >. ) ) |
| 104 |
103
|
anbi1d |
|- ( i = n -> ( ( <. i , j >. = <. a , b >. /\ ph ) <-> ( <. n , j >. = <. a , b >. /\ ph ) ) ) |
| 105 |
104
|
2exbidv |
|- ( i = n -> ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) ) ) |
| 106 |
102
|
eqeq1d |
|- ( i = n -> ( <. i , j >. = <. x , y >. <-> <. n , j >. = <. x , y >. ) ) |
| 107 |
105 106
|
imbi12d |
|- ( i = n -> ( ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) <-> ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) -> <. n , j >. = <. x , y >. ) ) ) |
| 108 |
|
opeq2 |
|- ( j = m -> <. n , j >. = <. n , m >. ) |
| 109 |
108
|
eqeq1d |
|- ( j = m -> ( <. n , j >. = <. a , b >. <-> <. n , m >. = <. a , b >. ) ) |
| 110 |
109
|
anbi1d |
|- ( j = m -> ( ( <. n , j >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. a , b >. /\ ph ) ) ) |
| 111 |
110
|
2exbidv |
|- ( j = m -> ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) ) |
| 112 |
108
|
eqeq1d |
|- ( j = m -> ( <. n , j >. = <. x , y >. <-> <. n , m >. = <. x , y >. ) ) |
| 113 |
111 112
|
imbi12d |
|- ( j = m -> ( ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) -> <. n , j >. = <. x , y >. ) <-> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) |
| 114 |
107 113
|
rspc2v |
|- ( ( n e. X /\ m e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) |
| 115 |
114
|
ancoms |
|- ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) |
| 116 |
|
pm3.22 |
|- ( ( m e. X /\ n e. X ) -> ( n e. X /\ m e. X ) ) |
| 117 |
116
|
anim1ci |
|- ( ( ( m e. X /\ n e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) |
| 118 |
117
|
3adant2 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) |
| 119 |
118
|
adantr |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) |
| 120 |
|
eqidd |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> <. n , m >. = <. n , m >. ) |
| 121 |
|
sbceq1a |
|- ( b = m -> ( ph <-> [. m / b ]. ph ) ) |
| 122 |
121
|
equcoms |
|- ( m = b -> ( ph <-> [. m / b ]. ph ) ) |
| 123 |
|
sbceq1a |
|- ( a = n -> ( [. m / b ]. ph <-> [. n / a ]. [. m / b ]. ph ) ) |
| 124 |
123
|
equcoms |
|- ( n = a -> ( [. m / b ]. ph <-> [. n / a ]. [. m / b ]. ph ) ) |
| 125 |
122 124
|
sylan9bb |
|- ( ( m = b /\ n = a ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) |
| 126 |
125
|
3ad2ant2 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) |
| 127 |
126
|
biimpa |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> [. n / a ]. [. m / b ]. ph ) |
| 128 |
119 120 127
|
jca32 |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) /\ ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) |
| 129 |
|
nfv |
|- F/ a <. n , m >. = <. n , m >. |
| 130 |
|
nfsbc1v |
|- F/ a [. n / a ]. [. m / b ]. ph |
| 131 |
129 130
|
nfan |
|- F/ a ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) |
| 132 |
|
nfv |
|- F/ b <. n , m >. = <. n , m >. |
| 133 |
|
nfcv |
|- F/_ b n |
| 134 |
|
nfsbc1v |
|- F/ b [. m / b ]. ph |
| 135 |
133 134
|
nfsbcw |
|- F/ b [. n / a ]. [. m / b ]. ph |
| 136 |
132 135
|
nfan |
|- F/ b ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) |
| 137 |
|
opeq12 |
|- ( ( a = n /\ b = m ) -> <. a , b >. = <. n , m >. ) |
| 138 |
137
|
eqeq2d |
|- ( ( a = n /\ b = m ) -> ( <. n , m >. = <. a , b >. <-> <. n , m >. = <. n , m >. ) ) |
| 139 |
121 123
|
sylan9bbr |
|- ( ( a = n /\ b = m ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) |
| 140 |
138 139
|
anbi12d |
|- ( ( a = n /\ b = m ) -> ( ( <. n , m >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) |
| 141 |
140
|
adantl |
|- ( ( ( x e. X /\ y e. X ) /\ ( a = n /\ b = m ) ) -> ( ( <. n , m >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) |
| 142 |
131 136 141
|
spc2ed |
|- ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) -> ( ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) -> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) ) |
| 143 |
142
|
imp |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) /\ ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) -> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) |
| 144 |
|
pm2.27 |
|- ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> <. n , m >. = <. x , y >. ) ) |
| 145 |
128 143 144
|
3syl |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> <. n , m >. = <. x , y >. ) ) |
| 146 |
|
prcom |
|- { n , m } = { m , n } |
| 147 |
|
oppr |
|- ( ( n e. _V /\ m e. _V ) -> ( <. n , m >. = <. x , y >. -> { n , m } = { x , y } ) ) |
| 148 |
147
|
el2v |
|- ( <. n , m >. = <. x , y >. -> { n , m } = { x , y } ) |
| 149 |
146 148
|
eqtr3id |
|- ( <. n , m >. = <. x , y >. -> { m , n } = { x , y } ) |
| 150 |
145 149
|
syl6 |
|- ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> { m , n } = { x , y } ) ) |
| 151 |
150
|
ex |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ph -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> { m , n } = { x , y } ) ) ) |
| 152 |
151
|
com23 |
|- ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) |
| 153 |
152
|
3exp |
|- ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 154 |
153
|
com24 |
|- ( ( m e. X /\ n e. X ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 155 |
115 154
|
syld |
|- ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 156 |
155
|
com13 |
|- ( ( x e. X /\ y e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) |
| 157 |
156
|
a1d |
|- ( ( x e. X /\ y e. X ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) ) |
| 158 |
157
|
imp42 |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) |
| 159 |
101 158
|
jaod |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( ( m = a /\ n = b ) \/ ( m = b /\ n = a ) ) -> ( ph -> { m , n } = { x , y } ) ) ) |
| 160 |
48 159
|
biimtrid |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( { m , n } = { a , b } -> ( ph -> { m , n } = { x , y } ) ) ) |
| 161 |
160
|
impd |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) |
| 162 |
42 43 161
|
exlimd |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) |
| 163 |
27 28 162
|
exlimd |
|- ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) |
| 164 |
163
|
ralrimivva |
|- ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) |
| 165 |
|
preq1 |
|- ( v = x -> { v , w } = { x , w } ) |
| 166 |
165
|
eqeq1d |
|- ( v = x -> ( { v , w } = { a , b } <-> { x , w } = { a , b } ) ) |
| 167 |
166
|
anbi1d |
|- ( v = x -> ( ( { v , w } = { a , b } /\ ph ) <-> ( { x , w } = { a , b } /\ ph ) ) ) |
| 168 |
167
|
2exbidv |
|- ( v = x -> ( E. a E. b ( { v , w } = { a , b } /\ ph ) <-> E. a E. b ( { x , w } = { a , b } /\ ph ) ) ) |
| 169 |
165
|
eqeq2d |
|- ( v = x -> ( { m , n } = { v , w } <-> { m , n } = { x , w } ) ) |
| 170 |
169
|
imbi2d |
|- ( v = x -> ( ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) <-> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) |
| 171 |
170
|
2ralbidv |
|- ( v = x -> ( A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) <-> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) |
| 172 |
168 171
|
anbi12d |
|- ( v = x -> ( ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) <-> ( E. a E. b ( { x , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) ) |
| 173 |
|
preq2 |
|- ( w = y -> { x , w } = { x , y } ) |
| 174 |
173
|
eqeq1d |
|- ( w = y -> ( { x , w } = { a , b } <-> { x , y } = { a , b } ) ) |
| 175 |
174
|
anbi1d |
|- ( w = y -> ( ( { x , w } = { a , b } /\ ph ) <-> ( { x , y } = { a , b } /\ ph ) ) ) |
| 176 |
175
|
2exbidv |
|- ( w = y -> ( E. a E. b ( { x , w } = { a , b } /\ ph ) <-> E. a E. b ( { x , y } = { a , b } /\ ph ) ) ) |
| 177 |
173
|
eqeq2d |
|- ( w = y -> ( { m , n } = { x , w } <-> { m , n } = { x , y } ) ) |
| 178 |
177
|
imbi2d |
|- ( w = y -> ( ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) <-> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) |
| 179 |
178
|
2ralbidv |
|- ( w = y -> ( A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) <-> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) |
| 180 |
176 179
|
anbi12d |
|- ( w = y -> ( ( E. a E. b ( { x , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) <-> ( E. a E. b ( { x , y } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) ) |
| 181 |
172 180
|
rspc2ev |
|- ( ( x e. X /\ y e. X /\ ( E. a E. b ( { x , y } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) |
| 182 |
8 9 15 164 181
|
syl112anc |
|- ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) |
| 183 |
182
|
ex |
|- ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) ) |
| 184 |
183
|
rexlimivv |
|- ( E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) |
| 185 |
|
eqeq1 |
|- ( p = { v , w } -> ( p = { a , b } <-> { v , w } = { a , b } ) ) |
| 186 |
185
|
anbi1d |
|- ( p = { v , w } -> ( ( p = { a , b } /\ ph ) <-> ( { v , w } = { a , b } /\ ph ) ) ) |
| 187 |
186
|
2exbidv |
|- ( p = { v , w } -> ( E. a E. b ( p = { a , b } /\ ph ) <-> E. a E. b ( { v , w } = { a , b } /\ ph ) ) ) |
| 188 |
|
eqeq1 |
|- ( p = { m , n } -> ( p = { a , b } <-> { m , n } = { a , b } ) ) |
| 189 |
188
|
anbi1d |
|- ( p = { m , n } -> ( ( p = { a , b } /\ ph ) <-> ( { m , n } = { a , b } /\ ph ) ) ) |
| 190 |
189
|
2exbidv |
|- ( p = { m , n } -> ( E. a E. b ( p = { a , b } /\ ph ) <-> E. a E. b ( { m , n } = { a , b } /\ ph ) ) ) |
| 191 |
187 190
|
reupr |
|- ( X e. V -> ( E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) <-> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) ) |
| 192 |
184 191
|
imbitrrid |
|- ( X e. V -> ( E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) ) ) |
| 193 |
7 192
|
biimtrid |
|- ( X e. V -> ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) -> E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) ) ) |