| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( p = <. x , y >. -> ( p = <. a , b >. <-> <. x , y >. = <. a , b >. ) ) | 
						
							| 2 | 1 | anbi1d |  |-  ( p = <. x , y >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. x , y >. = <. a , b >. /\ ph ) ) ) | 
						
							| 3 | 2 | 2exbidv |  |-  ( p = <. x , y >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( p = <. i , j >. -> ( p = <. a , b >. <-> <. i , j >. = <. a , b >. ) ) | 
						
							| 5 | 4 | anbi1d |  |-  ( p = <. i , j >. -> ( ( p = <. a , b >. /\ ph ) <-> ( <. i , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 6 | 5 | 2exbidv |  |-  ( p = <. i , j >. -> ( E. a E. b ( p = <. a , b >. /\ ph ) <-> E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 7 | 3 6 | reuop |  |-  ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) <-> E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> x e. X ) | 
						
							| 9 |  | simplr |  |-  ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> y e. X ) | 
						
							| 10 |  | oppr |  |-  ( ( x e. _V /\ y e. _V ) -> ( <. x , y >. = <. a , b >. -> { x , y } = { a , b } ) ) | 
						
							| 11 | 10 | el2v |  |-  ( <. x , y >. = <. a , b >. -> { x , y } = { a , b } ) | 
						
							| 12 | 11 | anim1i |  |-  ( ( <. x , y >. = <. a , b >. /\ ph ) -> ( { x , y } = { a , b } /\ ph ) ) | 
						
							| 13 | 12 | 2eximi |  |-  ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> E. a E. b ( { x , y } = { a , b } /\ ph ) ) | 
						
							| 16 |  | nfv |  |-  F/ a ( x e. X /\ y e. X ) | 
						
							| 17 |  | nfe1 |  |-  F/ a E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) | 
						
							| 18 |  | nfcv |  |-  F/_ a X | 
						
							| 19 |  | nfe1 |  |-  F/ a E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) | 
						
							| 20 |  | nfv |  |-  F/ a <. i , j >. = <. x , y >. | 
						
							| 21 | 19 20 | nfim |  |-  F/ a ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 22 | 18 21 | nfralw |  |-  F/ a A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 23 | 18 22 | nfralw |  |-  F/ a A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 24 | 17 23 | nfan |  |-  F/ a ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) | 
						
							| 25 | 16 24 | nfan |  |-  F/ a ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) | 
						
							| 26 |  | nfv |  |-  F/ a ( m e. X /\ n e. X ) | 
						
							| 27 | 25 26 | nfan |  |-  F/ a ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) | 
						
							| 28 |  | nfv |  |-  F/ a { m , n } = { x , y } | 
						
							| 29 |  | nfv |  |-  F/ b ( x e. X /\ y e. X ) | 
						
							| 30 |  | nfe1 |  |-  F/ b E. b ( <. x , y >. = <. a , b >. /\ ph ) | 
						
							| 31 | 30 | nfex |  |-  F/ b E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) | 
						
							| 32 |  | nfcv |  |-  F/_ b X | 
						
							| 33 |  | nfe1 |  |-  F/ b E. b ( <. i , j >. = <. a , b >. /\ ph ) | 
						
							| 34 | 33 | nfex |  |-  F/ b E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) | 
						
							| 35 |  | nfv |  |-  F/ b <. i , j >. = <. x , y >. | 
						
							| 36 | 34 35 | nfim |  |-  F/ b ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 37 | 32 36 | nfralw |  |-  F/ b A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 38 | 32 37 | nfralw |  |-  F/ b A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) | 
						
							| 39 | 31 38 | nfan |  |-  F/ b ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) | 
						
							| 40 | 29 39 | nfan |  |-  F/ b ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) | 
						
							| 41 |  | nfv |  |-  F/ b ( m e. X /\ n e. X ) | 
						
							| 42 | 40 41 | nfan |  |-  F/ b ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) | 
						
							| 43 |  | nfv |  |-  F/ b { m , n } = { x , y } | 
						
							| 44 |  | vex |  |-  m e. _V | 
						
							| 45 |  | vex |  |-  n e. _V | 
						
							| 46 |  | vex |  |-  a e. _V | 
						
							| 47 |  | vex |  |-  b e. _V | 
						
							| 48 | 44 45 46 47 | preq12b |  |-  ( { m , n } = { a , b } <-> ( ( m = a /\ n = b ) \/ ( m = b /\ n = a ) ) ) | 
						
							| 49 |  | opeq1 |  |-  ( i = m -> <. i , j >. = <. m , j >. ) | 
						
							| 50 | 49 | eqeq1d |  |-  ( i = m -> ( <. i , j >. = <. a , b >. <-> <. m , j >. = <. a , b >. ) ) | 
						
							| 51 | 50 | anbi1d |  |-  ( i = m -> ( ( <. i , j >. = <. a , b >. /\ ph ) <-> ( <. m , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 52 | 51 | 2exbidv |  |-  ( i = m -> ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 53 | 49 | eqeq1d |  |-  ( i = m -> ( <. i , j >. = <. x , y >. <-> <. m , j >. = <. x , y >. ) ) | 
						
							| 54 | 52 53 | imbi12d |  |-  ( i = m -> ( ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) <-> ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) -> <. m , j >. = <. x , y >. ) ) ) | 
						
							| 55 |  | opeq2 |  |-  ( j = n -> <. m , j >. = <. m , n >. ) | 
						
							| 56 | 55 | eqeq1d |  |-  ( j = n -> ( <. m , j >. = <. a , b >. <-> <. m , n >. = <. a , b >. ) ) | 
						
							| 57 | 56 | anbi1d |  |-  ( j = n -> ( ( <. m , j >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. a , b >. /\ ph ) ) ) | 
						
							| 58 | 57 | 2exbidv |  |-  ( j = n -> ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) ) | 
						
							| 59 | 55 | eqeq1d |  |-  ( j = n -> ( <. m , j >. = <. x , y >. <-> <. m , n >. = <. x , y >. ) ) | 
						
							| 60 | 58 59 | imbi12d |  |-  ( j = n -> ( ( E. a E. b ( <. m , j >. = <. a , b >. /\ ph ) -> <. m , j >. = <. x , y >. ) <-> ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) ) ) | 
						
							| 61 | 54 60 | rspc2v |  |-  ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) ) ) | 
						
							| 62 |  | pm3.22 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) | 
						
							| 63 | 62 | 3adant2 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) ) | 
						
							| 65 |  | eqidd |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> <. m , n >. = <. m , n >. ) | 
						
							| 66 |  | sbceq1a |  |-  ( a = m -> ( ph <-> [. m / a ]. ph ) ) | 
						
							| 67 | 66 | equcoms |  |-  ( m = a -> ( ph <-> [. m / a ]. ph ) ) | 
						
							| 68 |  | sbceq1a |  |-  ( b = n -> ( [. m / a ]. ph <-> [. n / b ]. [. m / a ]. ph ) ) | 
						
							| 69 | 68 | equcoms |  |-  ( n = b -> ( [. m / a ]. ph <-> [. n / b ]. [. m / a ]. ph ) ) | 
						
							| 70 | 67 69 | sylan9bb |  |-  ( ( m = a /\ n = b ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) | 
						
							| 71 | 70 | 3ad2ant2 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) | 
						
							| 72 | 71 | biimpa |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> [. n / b ]. [. m / a ]. ph ) | 
						
							| 73 | 64 65 72 | jca32 |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) /\ ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) | 
						
							| 74 |  | nfv |  |-  F/ a <. m , n >. = <. m , n >. | 
						
							| 75 |  | nfcv |  |-  F/_ a n | 
						
							| 76 |  | nfsbc1v |  |-  F/ a [. m / a ]. ph | 
						
							| 77 | 75 76 | nfsbcw |  |-  F/ a [. n / b ]. [. m / a ]. ph | 
						
							| 78 | 74 77 | nfan |  |-  F/ a ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) | 
						
							| 79 |  | nfv |  |-  F/ b <. m , n >. = <. m , n >. | 
						
							| 80 |  | nfsbc1v |  |-  F/ b [. n / b ]. [. m / a ]. ph | 
						
							| 81 | 79 80 | nfan |  |-  F/ b ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) | 
						
							| 82 |  | opeq12 |  |-  ( ( a = m /\ b = n ) -> <. a , b >. = <. m , n >. ) | 
						
							| 83 | 82 | eqeq2d |  |-  ( ( a = m /\ b = n ) -> ( <. m , n >. = <. a , b >. <-> <. m , n >. = <. m , n >. ) ) | 
						
							| 84 | 66 68 | sylan9bb |  |-  ( ( a = m /\ b = n ) -> ( ph <-> [. n / b ]. [. m / a ]. ph ) ) | 
						
							| 85 | 83 84 | anbi12d |  |-  ( ( a = m /\ b = n ) -> ( ( <. m , n >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( x e. X /\ y e. X ) /\ ( a = m /\ b = n ) ) -> ( ( <. m , n >. = <. a , b >. /\ ph ) <-> ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) ) | 
						
							| 87 | 78 81 86 | spc2ed |  |-  ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) -> ( ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) -> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( m e. X /\ n e. X ) ) /\ ( <. m , n >. = <. m , n >. /\ [. n / b ]. [. m / a ]. ph ) ) -> E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) ) | 
						
							| 89 |  | pm2.27 |  |-  ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> <. m , n >. = <. x , y >. ) ) | 
						
							| 90 | 73 88 89 | 3syl |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> <. m , n >. = <. x , y >. ) ) | 
						
							| 91 |  | oppr |  |-  ( ( m e. _V /\ n e. _V ) -> ( <. m , n >. = <. x , y >. -> { m , n } = { x , y } ) ) | 
						
							| 92 | 91 | el2v |  |-  ( <. m , n >. = <. x , y >. -> { m , n } = { x , y } ) | 
						
							| 93 | 90 92 | syl6 |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> { m , n } = { x , y } ) ) | 
						
							| 94 | 93 | ex |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ph -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> { m , n } = { x , y } ) ) ) | 
						
							| 95 | 94 | com23 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = a /\ n = b ) /\ ( x e. X /\ y e. X ) ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 96 | 95 | 3exp |  |-  ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 97 | 96 | com24 |  |-  ( ( m e. X /\ n e. X ) -> ( ( E. a E. b ( <. m , n >. = <. a , b >. /\ ph ) -> <. m , n >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 98 | 61 97 | syld |  |-  ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 99 | 98 | com13 |  |-  ( ( x e. X /\ y e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 100 | 99 | a1d |  |-  ( ( x e. X /\ y e. X ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) ) | 
						
							| 101 | 100 | imp42 |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( m = a /\ n = b ) -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 102 |  | opeq1 |  |-  ( i = n -> <. i , j >. = <. n , j >. ) | 
						
							| 103 | 102 | eqeq1d |  |-  ( i = n -> ( <. i , j >. = <. a , b >. <-> <. n , j >. = <. a , b >. ) ) | 
						
							| 104 | 103 | anbi1d |  |-  ( i = n -> ( ( <. i , j >. = <. a , b >. /\ ph ) <-> ( <. n , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 105 | 104 | 2exbidv |  |-  ( i = n -> ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) ) ) | 
						
							| 106 | 102 | eqeq1d |  |-  ( i = n -> ( <. i , j >. = <. x , y >. <-> <. n , j >. = <. x , y >. ) ) | 
						
							| 107 | 105 106 | imbi12d |  |-  ( i = n -> ( ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) <-> ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) -> <. n , j >. = <. x , y >. ) ) ) | 
						
							| 108 |  | opeq2 |  |-  ( j = m -> <. n , j >. = <. n , m >. ) | 
						
							| 109 | 108 | eqeq1d |  |-  ( j = m -> ( <. n , j >. = <. a , b >. <-> <. n , m >. = <. a , b >. ) ) | 
						
							| 110 | 109 | anbi1d |  |-  ( j = m -> ( ( <. n , j >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. a , b >. /\ ph ) ) ) | 
						
							| 111 | 110 | 2exbidv |  |-  ( j = m -> ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) <-> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) ) | 
						
							| 112 | 108 | eqeq1d |  |-  ( j = m -> ( <. n , j >. = <. x , y >. <-> <. n , m >. = <. x , y >. ) ) | 
						
							| 113 | 111 112 | imbi12d |  |-  ( j = m -> ( ( E. a E. b ( <. n , j >. = <. a , b >. /\ ph ) -> <. n , j >. = <. x , y >. ) <-> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) | 
						
							| 114 | 107 113 | rspc2v |  |-  ( ( n e. X /\ m e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) | 
						
							| 115 | 114 | ancoms |  |-  ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) ) ) | 
						
							| 116 |  | pm3.22 |  |-  ( ( m e. X /\ n e. X ) -> ( n e. X /\ m e. X ) ) | 
						
							| 117 | 116 | anim1ci |  |-  ( ( ( m e. X /\ n e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) | 
						
							| 118 | 117 | 3adant2 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) ) | 
						
							| 120 |  | eqidd |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> <. n , m >. = <. n , m >. ) | 
						
							| 121 |  | sbceq1a |  |-  ( b = m -> ( ph <-> [. m / b ]. ph ) ) | 
						
							| 122 | 121 | equcoms |  |-  ( m = b -> ( ph <-> [. m / b ]. ph ) ) | 
						
							| 123 |  | sbceq1a |  |-  ( a = n -> ( [. m / b ]. ph <-> [. n / a ]. [. m / b ]. ph ) ) | 
						
							| 124 | 123 | equcoms |  |-  ( n = a -> ( [. m / b ]. ph <-> [. n / a ]. [. m / b ]. ph ) ) | 
						
							| 125 | 122 124 | sylan9bb |  |-  ( ( m = b /\ n = a ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) | 
						
							| 126 | 125 | 3ad2ant2 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) | 
						
							| 127 | 126 | biimpa |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> [. n / a ]. [. m / b ]. ph ) | 
						
							| 128 | 119 120 127 | jca32 |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) /\ ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) | 
						
							| 129 |  | nfv |  |-  F/ a <. n , m >. = <. n , m >. | 
						
							| 130 |  | nfsbc1v |  |-  F/ a [. n / a ]. [. m / b ]. ph | 
						
							| 131 | 129 130 | nfan |  |-  F/ a ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) | 
						
							| 132 |  | nfv |  |-  F/ b <. n , m >. = <. n , m >. | 
						
							| 133 |  | nfcv |  |-  F/_ b n | 
						
							| 134 |  | nfsbc1v |  |-  F/ b [. m / b ]. ph | 
						
							| 135 | 133 134 | nfsbcw |  |-  F/ b [. n / a ]. [. m / b ]. ph | 
						
							| 136 | 132 135 | nfan |  |-  F/ b ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) | 
						
							| 137 |  | opeq12 |  |-  ( ( a = n /\ b = m ) -> <. a , b >. = <. n , m >. ) | 
						
							| 138 | 137 | eqeq2d |  |-  ( ( a = n /\ b = m ) -> ( <. n , m >. = <. a , b >. <-> <. n , m >. = <. n , m >. ) ) | 
						
							| 139 | 121 123 | sylan9bbr |  |-  ( ( a = n /\ b = m ) -> ( ph <-> [. n / a ]. [. m / b ]. ph ) ) | 
						
							| 140 | 138 139 | anbi12d |  |-  ( ( a = n /\ b = m ) -> ( ( <. n , m >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) | 
						
							| 141 | 140 | adantl |  |-  ( ( ( x e. X /\ y e. X ) /\ ( a = n /\ b = m ) ) -> ( ( <. n , m >. = <. a , b >. /\ ph ) <-> ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) ) | 
						
							| 142 | 131 136 141 | spc2ed |  |-  ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) -> ( ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) -> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) ) | 
						
							| 143 | 142 | imp |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( n e. X /\ m e. X ) ) /\ ( <. n , m >. = <. n , m >. /\ [. n / a ]. [. m / b ]. ph ) ) -> E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) ) | 
						
							| 144 |  | pm2.27 |  |-  ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> <. n , m >. = <. x , y >. ) ) | 
						
							| 145 | 128 143 144 | 3syl |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> <. n , m >. = <. x , y >. ) ) | 
						
							| 146 |  | prcom |  |-  { n , m } = { m , n } | 
						
							| 147 |  | oppr |  |-  ( ( n e. _V /\ m e. _V ) -> ( <. n , m >. = <. x , y >. -> { n , m } = { x , y } ) ) | 
						
							| 148 | 147 | el2v |  |-  ( <. n , m >. = <. x , y >. -> { n , m } = { x , y } ) | 
						
							| 149 | 146 148 | eqtr3id |  |-  ( <. n , m >. = <. x , y >. -> { m , n } = { x , y } ) | 
						
							| 150 | 145 149 | syl6 |  |-  ( ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) /\ ph ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> { m , n } = { x , y } ) ) | 
						
							| 151 | 150 | ex |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ph -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> { m , n } = { x , y } ) ) ) | 
						
							| 152 | 151 | com23 |  |-  ( ( ( m e. X /\ n e. X ) /\ ( m = b /\ n = a ) /\ ( x e. X /\ y e. X ) ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 153 | 152 | 3exp |  |-  ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 154 | 153 | com24 |  |-  ( ( m e. X /\ n e. X ) -> ( ( E. a E. b ( <. n , m >. = <. a , b >. /\ ph ) -> <. n , m >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 155 | 115 154 | syld |  |-  ( ( m e. X /\ n e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( x e. X /\ y e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 156 | 155 | com13 |  |-  ( ( x e. X /\ y e. X ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) | 
						
							| 157 | 156 | a1d |  |-  ( ( x e. X /\ y e. X ) -> ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) -> ( A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) -> ( ( m e. X /\ n e. X ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) ) ) ) | 
						
							| 158 | 157 | imp42 |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( m = b /\ n = a ) -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 159 | 101 158 | jaod |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( ( m = a /\ n = b ) \/ ( m = b /\ n = a ) ) -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 160 | 48 159 | biimtrid |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( { m , n } = { a , b } -> ( ph -> { m , n } = { x , y } ) ) ) | 
						
							| 161 | 160 | impd |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) | 
						
							| 162 | 42 43 161 | exlimd |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) | 
						
							| 163 | 27 28 162 | exlimd |  |-  ( ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) /\ ( m e. X /\ n e. X ) ) -> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) | 
						
							| 164 | 163 | ralrimivva |  |-  ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) | 
						
							| 165 |  | preq1 |  |-  ( v = x -> { v , w } = { x , w } ) | 
						
							| 166 | 165 | eqeq1d |  |-  ( v = x -> ( { v , w } = { a , b } <-> { x , w } = { a , b } ) ) | 
						
							| 167 | 166 | anbi1d |  |-  ( v = x -> ( ( { v , w } = { a , b } /\ ph ) <-> ( { x , w } = { a , b } /\ ph ) ) ) | 
						
							| 168 | 167 | 2exbidv |  |-  ( v = x -> ( E. a E. b ( { v , w } = { a , b } /\ ph ) <-> E. a E. b ( { x , w } = { a , b } /\ ph ) ) ) | 
						
							| 169 | 165 | eqeq2d |  |-  ( v = x -> ( { m , n } = { v , w } <-> { m , n } = { x , w } ) ) | 
						
							| 170 | 169 | imbi2d |  |-  ( v = x -> ( ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) <-> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) | 
						
							| 171 | 170 | 2ralbidv |  |-  ( v = x -> ( A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) <-> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) | 
						
							| 172 | 168 171 | anbi12d |  |-  ( v = x -> ( ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) <-> ( E. a E. b ( { x , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) ) ) | 
						
							| 173 |  | preq2 |  |-  ( w = y -> { x , w } = { x , y } ) | 
						
							| 174 | 173 | eqeq1d |  |-  ( w = y -> ( { x , w } = { a , b } <-> { x , y } = { a , b } ) ) | 
						
							| 175 | 174 | anbi1d |  |-  ( w = y -> ( ( { x , w } = { a , b } /\ ph ) <-> ( { x , y } = { a , b } /\ ph ) ) ) | 
						
							| 176 | 175 | 2exbidv |  |-  ( w = y -> ( E. a E. b ( { x , w } = { a , b } /\ ph ) <-> E. a E. b ( { x , y } = { a , b } /\ ph ) ) ) | 
						
							| 177 | 173 | eqeq2d |  |-  ( w = y -> ( { m , n } = { x , w } <-> { m , n } = { x , y } ) ) | 
						
							| 178 | 177 | imbi2d |  |-  ( w = y -> ( ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) <-> ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) | 
						
							| 179 | 178 | 2ralbidv |  |-  ( w = y -> ( A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) <-> A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) | 
						
							| 180 | 176 179 | anbi12d |  |-  ( w = y -> ( ( E. a E. b ( { x , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , w } ) ) <-> ( E. a E. b ( { x , y } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) ) | 
						
							| 181 | 172 180 | rspc2ev |  |-  ( ( x e. X /\ y e. X /\ ( E. a E. b ( { x , y } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { x , y } ) ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) | 
						
							| 182 | 8 9 15 164 181 | syl112anc |  |-  ( ( ( x e. X /\ y e. X ) /\ ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) | 
						
							| 183 | 182 | ex |  |-  ( ( x e. X /\ y e. X ) -> ( ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) ) | 
						
							| 184 | 183 | rexlimivv |  |-  ( E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) | 
						
							| 185 |  | eqeq1 |  |-  ( p = { v , w } -> ( p = { a , b } <-> { v , w } = { a , b } ) ) | 
						
							| 186 | 185 | anbi1d |  |-  ( p = { v , w } -> ( ( p = { a , b } /\ ph ) <-> ( { v , w } = { a , b } /\ ph ) ) ) | 
						
							| 187 | 186 | 2exbidv |  |-  ( p = { v , w } -> ( E. a E. b ( p = { a , b } /\ ph ) <-> E. a E. b ( { v , w } = { a , b } /\ ph ) ) ) | 
						
							| 188 |  | eqeq1 |  |-  ( p = { m , n } -> ( p = { a , b } <-> { m , n } = { a , b } ) ) | 
						
							| 189 | 188 | anbi1d |  |-  ( p = { m , n } -> ( ( p = { a , b } /\ ph ) <-> ( { m , n } = { a , b } /\ ph ) ) ) | 
						
							| 190 | 189 | 2exbidv |  |-  ( p = { m , n } -> ( E. a E. b ( p = { a , b } /\ ph ) <-> E. a E. b ( { m , n } = { a , b } /\ ph ) ) ) | 
						
							| 191 | 187 190 | reupr |  |-  ( X e. V -> ( E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) <-> E. v e. X E. w e. X ( E. a E. b ( { v , w } = { a , b } /\ ph ) /\ A. m e. X A. n e. X ( E. a E. b ( { m , n } = { a , b } /\ ph ) -> { m , n } = { v , w } ) ) ) ) | 
						
							| 192 | 184 191 | imbitrrid |  |-  ( X e. V -> ( E. x e. X E. y e. X ( E. a E. b ( <. x , y >. = <. a , b >. /\ ph ) /\ A. i e. X A. j e. X ( E. a E. b ( <. i , j >. = <. a , b >. /\ ph ) -> <. i , j >. = <. x , y >. ) ) -> E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) ) ) | 
						
							| 193 | 7 192 | biimtrid |  |-  ( X e. V -> ( E! p e. ( X X. X ) E. a E. b ( p = <. a , b >. /\ ph ) -> E! p e. ( Pairs ` X ) E. a E. b ( p = { a , b } /\ ph ) ) ) |