Metamath Proof Explorer


Theorem reuopreuprim

Description: There is a unique unordered pair with ordered elements fulfilling a wff if there is a unique ordered pair fulfilling the wff. (Contributed by AV, 28-Jul-2023)

Ref Expression
Assertion reuopreuprim X V ∃! p X × X a b p = a b φ ∃! p Pairs X a b p = a b φ

Proof

Step Hyp Ref Expression
1 eqeq1 p = x y p = a b x y = a b
2 1 anbi1d p = x y p = a b φ x y = a b φ
3 2 2exbidv p = x y a b p = a b φ a b x y = a b φ
4 eqeq1 p = i j p = a b i j = a b
5 4 anbi1d p = i j p = a b φ i j = a b φ
6 5 2exbidv p = i j a b p = a b φ a b i j = a b φ
7 3 6 reuop ∃! p X × X a b p = a b φ x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y
8 simpll x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y x X
9 simplr x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y y X
10 oppr x V y V x y = a b x y = a b
11 10 el2v x y = a b x y = a b
12 11 anim1i x y = a b φ x y = a b φ
13 12 2eximi a b x y = a b φ a b x y = a b φ
14 13 adantr a b x y = a b φ i X j X a b i j = a b φ i j = x y a b x y = a b φ
15 14 adantl x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y a b x y = a b φ
16 nfv a x X y X
17 nfe1 a a b x y = a b φ
18 nfcv _ a X
19 nfe1 a a b i j = a b φ
20 nfv a i j = x y
21 19 20 nfim a a b i j = a b φ i j = x y
22 18 21 nfralw a j X a b i j = a b φ i j = x y
23 18 22 nfralw a i X j X a b i j = a b φ i j = x y
24 17 23 nfan a a b x y = a b φ i X j X a b i j = a b φ i j = x y
25 16 24 nfan a x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y
26 nfv a m X n X
27 25 26 nfan a x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X
28 nfv a m n = x y
29 nfv b x X y X
30 nfe1 b b x y = a b φ
31 30 nfex b a b x y = a b φ
32 nfcv _ b X
33 nfe1 b b i j = a b φ
34 33 nfex b a b i j = a b φ
35 nfv b i j = x y
36 34 35 nfim b a b i j = a b φ i j = x y
37 32 36 nfralw b j X a b i j = a b φ i j = x y
38 32 37 nfralw b i X j X a b i j = a b φ i j = x y
39 31 38 nfan b a b x y = a b φ i X j X a b i j = a b φ i j = x y
40 29 39 nfan b x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y
41 nfv b m X n X
42 40 41 nfan b x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X
43 nfv b m n = x y
44 vex m V
45 vex n V
46 vex a V
47 vex b V
48 44 45 46 47 preq12b m n = a b m = a n = b m = b n = a
49 opeq1 i = m i j = m j
50 49 eqeq1d i = m i j = a b m j = a b
51 50 anbi1d i = m i j = a b φ m j = a b φ
52 51 2exbidv i = m a b i j = a b φ a b m j = a b φ
53 49 eqeq1d i = m i j = x y m j = x y
54 52 53 imbi12d i = m a b i j = a b φ i j = x y a b m j = a b φ m j = x y
55 opeq2 j = n m j = m n
56 55 eqeq1d j = n m j = a b m n = a b
57 56 anbi1d j = n m j = a b φ m n = a b φ
58 57 2exbidv j = n a b m j = a b φ a b m n = a b φ
59 55 eqeq1d j = n m j = x y m n = x y
60 58 59 imbi12d j = n a b m j = a b φ m j = x y a b m n = a b φ m n = x y
61 54 60 rspc2v m X n X i X j X a b i j = a b φ i j = x y a b m n = a b φ m n = x y
62 pm3.22 m X n X x X y X x X y X m X n X
63 62 3adant2 m X n X m = a n = b x X y X x X y X m X n X
64 63 adantr m X n X m = a n = b x X y X φ x X y X m X n X
65 eqidd m X n X m = a n = b x X y X φ m n = m n
66 sbceq1a a = m φ [˙m / a]˙ φ
67 66 equcoms m = a φ [˙m / a]˙ φ
68 sbceq1a b = n [˙m / a]˙ φ [˙n / b]˙ [˙m / a]˙ φ
69 68 equcoms n = b [˙m / a]˙ φ [˙n / b]˙ [˙m / a]˙ φ
70 67 69 sylan9bb m = a n = b φ [˙n / b]˙ [˙m / a]˙ φ
71 70 3ad2ant2 m X n X m = a n = b x X y X φ [˙n / b]˙ [˙m / a]˙ φ
72 71 biimpa m X n X m = a n = b x X y X φ [˙n / b]˙ [˙m / a]˙ φ
73 64 65 72 jca32 m X n X m = a n = b x X y X φ x X y X m X n X m n = m n [˙n / b]˙ [˙m / a]˙ φ
74 nfv a m n = m n
75 nfcv _ a n
76 nfsbc1v a [˙m / a]˙ φ
77 75 76 nfsbcw a [˙n / b]˙ [˙m / a]˙ φ
78 74 77 nfan a m n = m n [˙n / b]˙ [˙m / a]˙ φ
79 nfv b m n = m n
80 nfsbc1v b [˙n / b]˙ [˙m / a]˙ φ
81 79 80 nfan b m n = m n [˙n / b]˙ [˙m / a]˙ φ
82 opeq12 a = m b = n a b = m n
83 82 eqeq2d a = m b = n m n = a b m n = m n
84 66 68 sylan9bb a = m b = n φ [˙n / b]˙ [˙m / a]˙ φ
85 83 84 anbi12d a = m b = n m n = a b φ m n = m n [˙n / b]˙ [˙m / a]˙ φ
86 85 adantl x X y X a = m b = n m n = a b φ m n = m n [˙n / b]˙ [˙m / a]˙ φ
87 78 81 86 spc2ed x X y X m X n X m n = m n [˙n / b]˙ [˙m / a]˙ φ a b m n = a b φ
88 87 imp x X y X m X n X m n = m n [˙n / b]˙ [˙m / a]˙ φ a b m n = a b φ
89 pm2.27 a b m n = a b φ a b m n = a b φ m n = x y m n = x y
90 73 88 89 3syl m X n X m = a n = b x X y X φ a b m n = a b φ m n = x y m n = x y
91 oppr m V n V m n = x y m n = x y
92 91 el2v m n = x y m n = x y
93 90 92 syl6 m X n X m = a n = b x X y X φ a b m n = a b φ m n = x y m n = x y
94 93 ex m X n X m = a n = b x X y X φ a b m n = a b φ m n = x y m n = x y
95 94 com23 m X n X m = a n = b x X y X a b m n = a b φ m n = x y φ m n = x y
96 95 3exp m X n X m = a n = b x X y X a b m n = a b φ m n = x y φ m n = x y
97 96 com24 m X n X a b m n = a b φ m n = x y x X y X m = a n = b φ m n = x y
98 61 97 syld m X n X i X j X a b i j = a b φ i j = x y x X y X m = a n = b φ m n = x y
99 98 com13 x X y X i X j X a b i j = a b φ i j = x y m X n X m = a n = b φ m n = x y
100 99 a1d x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m = a n = b φ m n = x y
101 100 imp42 x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m = a n = b φ m n = x y
102 opeq1 i = n i j = n j
103 102 eqeq1d i = n i j = a b n j = a b
104 103 anbi1d i = n i j = a b φ n j = a b φ
105 104 2exbidv i = n a b i j = a b φ a b n j = a b φ
106 102 eqeq1d i = n i j = x y n j = x y
107 105 106 imbi12d i = n a b i j = a b φ i j = x y a b n j = a b φ n j = x y
108 opeq2 j = m n j = n m
109 108 eqeq1d j = m n j = a b n m = a b
110 109 anbi1d j = m n j = a b φ n m = a b φ
111 110 2exbidv j = m a b n j = a b φ a b n m = a b φ
112 108 eqeq1d j = m n j = x y n m = x y
113 111 112 imbi12d j = m a b n j = a b φ n j = x y a b n m = a b φ n m = x y
114 107 113 rspc2v n X m X i X j X a b i j = a b φ i j = x y a b n m = a b φ n m = x y
115 114 ancoms m X n X i X j X a b i j = a b φ i j = x y a b n m = a b φ n m = x y
116 pm3.22 m X n X n X m X
117 116 anim1ci m X n X x X y X x X y X n X m X
118 117 3adant2 m X n X m = b n = a x X y X x X y X n X m X
119 118 adantr m X n X m = b n = a x X y X φ x X y X n X m X
120 eqidd m X n X m = b n = a x X y X φ n m = n m
121 sbceq1a b = m φ [˙m / b]˙ φ
122 121 equcoms m = b φ [˙m / b]˙ φ
123 sbceq1a a = n [˙m / b]˙ φ [˙n / a]˙ [˙m / b]˙ φ
124 123 equcoms n = a [˙m / b]˙ φ [˙n / a]˙ [˙m / b]˙ φ
125 122 124 sylan9bb m = b n = a φ [˙n / a]˙ [˙m / b]˙ φ
126 125 3ad2ant2 m X n X m = b n = a x X y X φ [˙n / a]˙ [˙m / b]˙ φ
127 126 biimpa m X n X m = b n = a x X y X φ [˙n / a]˙ [˙m / b]˙ φ
128 119 120 127 jca32 m X n X m = b n = a x X y X φ x X y X n X m X n m = n m [˙n / a]˙ [˙m / b]˙ φ
129 nfv a n m = n m
130 nfsbc1v a [˙n / a]˙ [˙m / b]˙ φ
131 129 130 nfan a n m = n m [˙n / a]˙ [˙m / b]˙ φ
132 nfv b n m = n m
133 nfcv _ b n
134 nfsbc1v b [˙m / b]˙ φ
135 133 134 nfsbcw b [˙n / a]˙ [˙m / b]˙ φ
136 132 135 nfan b n m = n m [˙n / a]˙ [˙m / b]˙ φ
137 opeq12 a = n b = m a b = n m
138 137 eqeq2d a = n b = m n m = a b n m = n m
139 121 123 sylan9bbr a = n b = m φ [˙n / a]˙ [˙m / b]˙ φ
140 138 139 anbi12d a = n b = m n m = a b φ n m = n m [˙n / a]˙ [˙m / b]˙ φ
141 140 adantl x X y X a = n b = m n m = a b φ n m = n m [˙n / a]˙ [˙m / b]˙ φ
142 131 136 141 spc2ed x X y X n X m X n m = n m [˙n / a]˙ [˙m / b]˙ φ a b n m = a b φ
143 142 imp x X y X n X m X n m = n m [˙n / a]˙ [˙m / b]˙ φ a b n m = a b φ
144 pm2.27 a b n m = a b φ a b n m = a b φ n m = x y n m = x y
145 128 143 144 3syl m X n X m = b n = a x X y X φ a b n m = a b φ n m = x y n m = x y
146 prcom n m = m n
147 oppr n V m V n m = x y n m = x y
148 147 el2v n m = x y n m = x y
149 146 148 eqtr3id n m = x y m n = x y
150 145 149 syl6 m X n X m = b n = a x X y X φ a b n m = a b φ n m = x y m n = x y
151 150 ex m X n X m = b n = a x X y X φ a b n m = a b φ n m = x y m n = x y
152 151 com23 m X n X m = b n = a x X y X a b n m = a b φ n m = x y φ m n = x y
153 152 3exp m X n X m = b n = a x X y X a b n m = a b φ n m = x y φ m n = x y
154 153 com24 m X n X a b n m = a b φ n m = x y x X y X m = b n = a φ m n = x y
155 115 154 syld m X n X i X j X a b i j = a b φ i j = x y x X y X m = b n = a φ m n = x y
156 155 com13 x X y X i X j X a b i j = a b φ i j = x y m X n X m = b n = a φ m n = x y
157 156 a1d x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m = b n = a φ m n = x y
158 157 imp42 x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m = b n = a φ m n = x y
159 101 158 jaod x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m = a n = b m = b n = a φ m n = x y
160 48 159 syl5bi x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m n = a b φ m n = x y
161 160 impd x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X m n = a b φ m n = x y
162 42 43 161 exlimd x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X b m n = a b φ m n = x y
163 27 28 162 exlimd x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X a b m n = a b φ m n = x y
164 163 ralrimivva x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y m X n X a b m n = a b φ m n = x y
165 preq1 v = x v w = x w
166 165 eqeq1d v = x v w = a b x w = a b
167 166 anbi1d v = x v w = a b φ x w = a b φ
168 167 2exbidv v = x a b v w = a b φ a b x w = a b φ
169 165 eqeq2d v = x m n = v w m n = x w
170 169 imbi2d v = x a b m n = a b φ m n = v w a b m n = a b φ m n = x w
171 170 2ralbidv v = x m X n X a b m n = a b φ m n = v w m X n X a b m n = a b φ m n = x w
172 168 171 anbi12d v = x a b v w = a b φ m X n X a b m n = a b φ m n = v w a b x w = a b φ m X n X a b m n = a b φ m n = x w
173 preq2 w = y x w = x y
174 173 eqeq1d w = y x w = a b x y = a b
175 174 anbi1d w = y x w = a b φ x y = a b φ
176 175 2exbidv w = y a b x w = a b φ a b x y = a b φ
177 173 eqeq2d w = y m n = x w m n = x y
178 177 imbi2d w = y a b m n = a b φ m n = x w a b m n = a b φ m n = x y
179 178 2ralbidv w = y m X n X a b m n = a b φ m n = x w m X n X a b m n = a b φ m n = x y
180 176 179 anbi12d w = y a b x w = a b φ m X n X a b m n = a b φ m n = x w a b x y = a b φ m X n X a b m n = a b φ m n = x y
181 172 180 rspc2ev x X y X a b x y = a b φ m X n X a b m n = a b φ m n = x y v X w X a b v w = a b φ m X n X a b m n = a b φ m n = v w
182 8 9 15 164 181 syl112anc x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y v X w X a b v w = a b φ m X n X a b m n = a b φ m n = v w
183 182 ex x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y v X w X a b v w = a b φ m X n X a b m n = a b φ m n = v w
184 183 rexlimivv x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y v X w X a b v w = a b φ m X n X a b m n = a b φ m n = v w
185 eqeq1 p = v w p = a b v w = a b
186 185 anbi1d p = v w p = a b φ v w = a b φ
187 186 2exbidv p = v w a b p = a b φ a b v w = a b φ
188 eqeq1 p = m n p = a b m n = a b
189 188 anbi1d p = m n p = a b φ m n = a b φ
190 189 2exbidv p = m n a b p = a b φ a b m n = a b φ
191 187 190 reupr X V ∃! p Pairs X a b p = a b φ v X w X a b v w = a b φ m X n X a b m n = a b φ m n = v w
192 184 191 syl5ibr X V x X y X a b x y = a b φ i X j X a b i j = a b φ i j = x y ∃! p Pairs X a b p = a b φ
193 7 192 syl5bi X V ∃! p X × X a b p = a b φ ∃! p Pairs X a b p = a b φ