Description: A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2fvcoidd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2fvcoidd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| 2fvcoidd.i | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) | ||
| 2fvidf1od.i | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) = 𝑏 ) | ||
| Assertion | 2fvidf1od | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fvcoidd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 2fvcoidd.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | 2fvcoidd.i | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) | |
| 4 | 2fvidf1od.i | ⊢ ( 𝜑 → ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) = 𝑏 ) | |
| 5 | 1 2 3 | 2fvcoidd | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 6 | 2 1 4 | 2fvcoidd | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
| 7 | 1 2 5 6 | fcof1od | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |