Metamath Proof Explorer


Theorem 2llnneN

Description: Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lnne.l = ( le ‘ 𝐾 )
2lnne.j = ( join ‘ 𝐾 )
2lnne.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 2llnneN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) )

Proof

Step Hyp Ref Expression
1 2lnne.l = ( le ‘ 𝐾 )
2 2lnne.j = ( join ‘ 𝐾 )
3 2lnne.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
5 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
6 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
7 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → 𝑃𝐴 )
8 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → 𝑅𝐴 )
9 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → 𝑄𝐴 )
10 7 8 9 3jca ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃𝐴𝑅𝐴𝑄𝐴 ) )
11 1 2 3 hlatexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 ( 𝑅 𝑄 ) → 𝑅 ( 𝑃 𝑄 ) ) )
12 10 11 syld3an2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 ( 𝑅 𝑄 ) → 𝑅 ( 𝑃 𝑄 ) ) )
13 12 con3d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑄 ) → ( ¬ 𝑅 ( 𝑃 𝑄 ) → ¬ 𝑃 ( 𝑅 𝑄 ) ) )
14 13 3exp ( 𝐾 ∈ HL → ( ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) → ( 𝑃𝑄 → ( ¬ 𝑅 ( 𝑃 𝑄 ) → ¬ 𝑃 ( 𝑅 𝑄 ) ) ) ) )
15 14 imp4a ( 𝐾 ∈ HL → ( ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) → ( ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ¬ 𝑃 ( 𝑅 𝑄 ) ) ) )
16 15 3imp ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑃 ( 𝑅 𝑄 ) )
17 1 2 3 2llnne2N ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ∧ ¬ 𝑃 ( 𝑅 𝑄 ) ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) )
18 4 5 6 16 17 syl121anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) )