| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
9nn |
⊢ 9 ∈ ℕ |
| 3 |
2
|
nnzi |
⊢ 9 ∈ ℤ |
| 4 |
|
2re |
⊢ 2 ∈ ℝ |
| 5 |
|
9re |
⊢ 9 ∈ ℝ |
| 6 |
|
2lt9 |
⊢ 2 < 9 |
| 7 |
4 5 6
|
ltleii |
⊢ 2 ≤ 9 |
| 8 |
|
eluz2 |
⊢ ( 9 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9 ) ) |
| 9 |
1 3 7 8
|
mpbir3an |
⊢ 9 ∈ ( ℤ≥ ‘ 2 ) |
| 10 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
| 11 |
1 10
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 12 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
| 13 |
12
|
eqcomi |
⊢ 9 = ( 3 ↑ 2 ) |
| 14 |
13
|
oveq1i |
⊢ ( 9 gcd 2 ) = ( ( 3 ↑ 2 ) gcd 2 ) |
| 15 |
|
2lt3 |
⊢ 2 < 3 |
| 16 |
4 15
|
gtneii |
⊢ 3 ≠ 2 |
| 17 |
|
3prm |
⊢ 3 ∈ ℙ |
| 18 |
|
2prm |
⊢ 2 ∈ ℙ |
| 19 |
|
prmrp |
⊢ ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ) → ( ( 3 gcd 2 ) = 1 ↔ 3 ≠ 2 ) ) |
| 20 |
17 18 19
|
mp2an |
⊢ ( ( 3 gcd 2 ) = 1 ↔ 3 ≠ 2 ) |
| 21 |
16 20
|
mpbir |
⊢ ( 3 gcd 2 ) = 1 |
| 22 |
|
3z |
⊢ 3 ∈ ℤ |
| 23 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 24 |
|
rpexp1i |
⊢ ( ( 3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( ( 3 gcd 2 ) = 1 → ( ( 3 ↑ 2 ) gcd 2 ) = 1 ) ) |
| 25 |
22 1 23 24
|
mp3an |
⊢ ( ( 3 gcd 2 ) = 1 → ( ( 3 ↑ 2 ) gcd 2 ) = 1 ) |
| 26 |
21 25
|
ax-mp |
⊢ ( ( 3 ↑ 2 ) gcd 2 ) = 1 |
| 27 |
14 26
|
eqtri |
⊢ ( 9 gcd 2 ) = 1 |
| 28 |
|
logbgcd1irr |
⊢ ( ( 9 ∈ ( ℤ≥ ‘ 2 ) ∧ 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 9 gcd 2 ) = 1 ) → ( 2 logb 9 ) ∈ ( ℝ ∖ ℚ ) ) |
| 29 |
9 11 27 28
|
mp3an |
⊢ ( 2 logb 9 ) ∈ ( ℝ ∖ ℚ ) |