Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℕ ) |
2 |
1
|
nnrpd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ+ ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → 𝐵 ∈ ℝ+ ) |
4 |
|
eluz2nn |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → 𝑋 ∈ ℕ ) |
5 |
4
|
nnrpd |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → 𝑋 ∈ ℝ+ ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → 𝑋 ∈ ℝ+ ) |
7 |
|
eluz2b3 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐵 ∈ ℕ ∧ 𝐵 ≠ 1 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ≠ 1 ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → 𝐵 ≠ 1 ) |
10 |
3 6 9
|
3jca |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
11 |
|
relogbcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝑋 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → ( 𝐵 logb 𝑋 ) ∈ ℝ ) |
13 |
|
eluz2gt1 |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑋 ) |
14 |
13
|
adantr |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝑋 ) |
15 |
4
|
adantr |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑋 ∈ ℕ ) |
16 |
15
|
nnrpd |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑋 ∈ ℝ+ ) |
17 |
1
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℕ ) |
18 |
17
|
nnrpd |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℝ+ ) |
19 |
|
eluz2gt1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐵 ) |
20 |
19
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝐵 ) |
21 |
|
logbgt0b |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ ( 𝐵 ∈ ℝ+ ∧ 1 < 𝐵 ) ) → ( 0 < ( 𝐵 logb 𝑋 ) ↔ 1 < 𝑋 ) ) |
22 |
16 18 20 21
|
syl12anc |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 0 < ( 𝐵 logb 𝑋 ) ↔ 1 < 𝑋 ) ) |
23 |
14 22
|
mpbird |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 𝐵 logb 𝑋 ) ) |
24 |
23
|
anim1ci |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐵 logb 𝑋 ) ∈ ℚ ) → ( ( 𝐵 logb 𝑋 ) ∈ ℚ ∧ 0 < ( 𝐵 logb 𝑋 ) ) ) |
25 |
|
elpq |
⊢ ( ( ( 𝐵 logb 𝑋 ) ∈ ℚ ∧ 0 < ( 𝐵 logb 𝑋 ) ) → ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) ) |
26 |
24 25
|
syl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝐵 logb 𝑋 ) ∈ ℚ ) → ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐵 logb 𝑋 ) ∈ ℚ → ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) ) ) |
28 |
|
oveq2 |
⊢ ( ( 𝑚 / 𝑛 ) = ( 𝐵 logb 𝑋 ) → ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) ) |
29 |
28
|
eqcoms |
⊢ ( ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) → ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) ) |
30 |
|
eluzelcn |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℂ ) |
31 |
30
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℂ ) |
32 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
33 |
1 32
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ≠ 0 ) |
34 |
33 8
|
nelprd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ¬ 𝐵 ∈ { 0 , 1 } ) |
35 |
34
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ 𝐵 ∈ { 0 , 1 } ) |
36 |
31 35
|
eldifd |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
37 |
|
eluzelcn |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → 𝑋 ∈ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑋 ∈ ℂ ) |
39 |
|
nnne0 |
⊢ ( 𝑋 ∈ ℕ → 𝑋 ≠ 0 ) |
40 |
|
nelsn |
⊢ ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ { 0 } ) |
41 |
4 39 40
|
3syl |
⊢ ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) → ¬ 𝑋 ∈ { 0 } ) |
42 |
41
|
adantr |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ 𝑋 ∈ { 0 } ) |
43 |
38 42
|
eldifd |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑋 ∈ ( ℂ ∖ { 0 } ) ) |
44 |
|
cxplogb |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |
45 |
36 43 44
|
syl2anc |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 ↑𝑐 ( 𝐵 logb 𝑋 ) ) = 𝑋 ) |
47 |
29 46
|
sylan9eqr |
⊢ ( ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) ) → ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = 𝑋 ) |
48 |
47
|
ex |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) → ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = 𝑋 ) ) |
49 |
|
oveq1 |
⊢ ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = 𝑋 → ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ) |
50 |
31
|
adantr |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝐵 ∈ ℂ ) |
51 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
52 |
51
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
53 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
54 |
53
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℂ ) |
55 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
56 |
55
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ≠ 0 ) |
57 |
52 54 56
|
3jca |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
58 |
|
divcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) → ( 𝑚 / 𝑛 ) ∈ ℂ ) |
59 |
57 58
|
syl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑚 / 𝑛 ) ∈ ℂ ) |
60 |
59
|
adantl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑚 / 𝑛 ) ∈ ℂ ) |
61 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
62 |
61
|
adantl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ0 ) |
64 |
50 60 63
|
3jca |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 ∈ ℂ ∧ ( 𝑚 / 𝑛 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) ) |
65 |
|
cxpmul2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝑚 / 𝑛 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝐵 ↑𝑐 ( ( 𝑚 / 𝑛 ) · 𝑛 ) ) = ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) ) |
66 |
65
|
eqcomd |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝑚 / 𝑛 ) ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝐵 ↑𝑐 ( ( 𝑚 / 𝑛 ) · 𝑛 ) ) ) |
67 |
64 66
|
syl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝐵 ↑𝑐 ( ( 𝑚 / 𝑛 ) · 𝑛 ) ) ) |
68 |
57
|
adantl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
69 |
|
divcan1 |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) → ( ( 𝑚 / 𝑛 ) · 𝑛 ) = 𝑚 ) |
70 |
68 69
|
syl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑚 / 𝑛 ) · 𝑛 ) = 𝑚 ) |
71 |
70
|
oveq2d |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 ↑𝑐 ( ( 𝑚 / 𝑛 ) · 𝑛 ) ) = ( 𝐵 ↑𝑐 𝑚 ) ) |
72 |
33
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ≠ 0 ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝐵 ≠ 0 ) |
74 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
75 |
74
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
76 |
75
|
adantl |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → 𝑚 ∈ ℤ ) |
77 |
50 73 76
|
cxpexpzd |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 ↑𝑐 𝑚 ) = ( 𝐵 ↑ 𝑚 ) ) |
78 |
71 77
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 ↑𝑐 ( ( 𝑚 / 𝑛 ) · 𝑛 ) ) = ( 𝐵 ↑ 𝑚 ) ) |
79 |
67 78
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝐵 ↑ 𝑚 ) ) |
80 |
79
|
eqeq1d |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) ↔ ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) ) ) |
81 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
82 |
|
rplpwr |
⊢ ( ( 𝑋 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑋 gcd 𝐵 ) = 1 → ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 ) ) |
83 |
15 17 81 82
|
syl2an3an |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑋 gcd 𝐵 ) = 1 → ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 ) ) |
84 |
|
oveq1 |
⊢ ( ( 𝑋 ↑ 𝑛 ) = ( 𝐵 ↑ 𝑚 ) → ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) ) |
85 |
84
|
eqeq1d |
⊢ ( ( 𝑋 ↑ 𝑛 ) = ( 𝐵 ↑ 𝑚 ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 ↔ ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 ) ) |
86 |
85
|
eqcoms |
⊢ ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 ↔ ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 ) ) |
87 |
86
|
adantl |
⊢ ( ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 ↔ ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 ) ) |
88 |
|
eluzelz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℤ ) |
89 |
88
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐵 ∈ ℤ ) |
90 |
|
simpl |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
91 |
|
rpexp |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 ↔ ( 𝐵 gcd 𝐵 ) = 1 ) ) |
92 |
89 89 90 91
|
syl2an3an |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 ↔ ( 𝐵 gcd 𝐵 ) = 1 ) ) |
93 |
|
gcdid |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 gcd 𝐵 ) = ( abs ‘ 𝐵 ) ) |
94 |
88 93
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 gcd 𝐵 ) = ( abs ‘ 𝐵 ) ) |
95 |
|
eluzelre |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 𝐵 ∈ ℝ ) |
96 |
|
nnnn0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℕ0 ) |
97 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
98 |
1 96 97
|
3syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝐵 ) |
99 |
95 98
|
absidd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( abs ‘ 𝐵 ) = 𝐵 ) |
100 |
94 99
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 gcd 𝐵 ) = 𝐵 ) |
101 |
100
|
eqeq1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐵 gcd 𝐵 ) = 1 ↔ 𝐵 = 1 ) ) |
102 |
101
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐵 gcd 𝐵 ) = 1 ↔ 𝐵 = 1 ) ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 gcd 𝐵 ) = 1 ↔ 𝐵 = 1 ) ) |
104 |
|
eqneqall |
⊢ ( 𝐵 = 1 → ( 𝐵 ≠ 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
105 |
8 104
|
syl5com |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
106 |
105
|
adantl |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐵 = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( 𝐵 = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
108 |
103 107
|
sylbid |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 gcd 𝐵 ) = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
109 |
92 108
|
sylbid |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
110 |
109
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) ) → ( ( ( 𝐵 ↑ 𝑚 ) gcd 𝐵 ) = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
111 |
87 110
|
sylbid |
⊢ ( ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
112 |
111
|
ex |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) ) |
113 |
112
|
com23 |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑋 ↑ 𝑛 ) gcd 𝐵 ) = 1 → ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) ) |
114 |
83 113
|
syld |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑋 gcd 𝐵 ) = 1 → ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) ) |
115 |
|
ax-1 |
⊢ ( ¬ ( 𝑋 gcd 𝐵 ) = 1 → ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
116 |
114 115
|
pm2.61d1 |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 ↑ 𝑚 ) = ( 𝑋 ↑ 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
117 |
80 116
|
sylbid |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) ↑ 𝑛 ) = ( 𝑋 ↑ 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
118 |
49 117
|
syl5 |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 ↑𝑐 ( 𝑚 / 𝑛 ) ) = 𝑋 → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
119 |
48 118
|
syld |
⊢ ( ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
120 |
119
|
rexlimdvva |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( 𝐵 logb 𝑋 ) = ( 𝑚 / 𝑛 ) → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
121 |
27 120
|
syld |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐵 logb 𝑋 ) ∈ ℚ → ¬ ( 𝑋 gcd 𝐵 ) = 1 ) ) |
122 |
121
|
con2d |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑋 gcd 𝐵 ) = 1 → ¬ ( 𝐵 logb 𝑋 ) ∈ ℚ ) ) |
123 |
122
|
3impia |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → ¬ ( 𝐵 logb 𝑋 ) ∈ ℚ ) |
124 |
12 123
|
eldifd |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → ( 𝐵 logb 𝑋 ) ∈ ( ℝ ∖ ℚ ) ) |