Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. NN ) |
2 |
1
|
nnrpd |
|- ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) |
3 |
2
|
3ad2ant2 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> B e. RR+ ) |
4 |
|
eluz2nn |
|- ( X e. ( ZZ>= ` 2 ) -> X e. NN ) |
5 |
4
|
nnrpd |
|- ( X e. ( ZZ>= ` 2 ) -> X e. RR+ ) |
6 |
5
|
3ad2ant1 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> X e. RR+ ) |
7 |
|
eluz2b3 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ B =/= 1 ) ) |
8 |
7
|
simprbi |
|- ( B e. ( ZZ>= ` 2 ) -> B =/= 1 ) |
9 |
8
|
3ad2ant2 |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> B =/= 1 ) |
10 |
3 6 9
|
3jca |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) ) |
11 |
|
relogbcl |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) e. RR ) |
12 |
10 11
|
syl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> ( B logb X ) e. RR ) |
13 |
|
eluz2gt1 |
|- ( X e. ( ZZ>= ` 2 ) -> 1 < X ) |
14 |
13
|
adantr |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 1 < X ) |
15 |
4
|
adantr |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> X e. NN ) |
16 |
15
|
nnrpd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> X e. RR+ ) |
17 |
1
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. NN ) |
18 |
17
|
nnrpd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. RR+ ) |
19 |
|
eluz2gt1 |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
20 |
19
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 1 < B ) |
21 |
|
logbgt0b |
|- ( ( X e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( 0 < ( B logb X ) <-> 1 < X ) ) |
22 |
16 18 20 21
|
syl12anc |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( 0 < ( B logb X ) <-> 1 < X ) ) |
23 |
14 22
|
mpbird |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> 0 < ( B logb X ) ) |
24 |
23
|
anim1ci |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( B logb X ) e. QQ ) -> ( ( B logb X ) e. QQ /\ 0 < ( B logb X ) ) ) |
25 |
|
elpq |
|- ( ( ( B logb X ) e. QQ /\ 0 < ( B logb X ) ) -> E. m e. NN E. n e. NN ( B logb X ) = ( m / n ) ) |
26 |
24 25
|
syl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( B logb X ) e. QQ ) -> E. m e. NN E. n e. NN ( B logb X ) = ( m / n ) ) |
27 |
26
|
ex |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( B logb X ) e. QQ -> E. m e. NN E. n e. NN ( B logb X ) = ( m / n ) ) ) |
28 |
|
oveq2 |
|- ( ( m / n ) = ( B logb X ) -> ( B ^c ( m / n ) ) = ( B ^c ( B logb X ) ) ) |
29 |
28
|
eqcoms |
|- ( ( B logb X ) = ( m / n ) -> ( B ^c ( m / n ) ) = ( B ^c ( B logb X ) ) ) |
30 |
|
eluzelcn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. CC ) |
31 |
30
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. CC ) |
32 |
|
nnne0 |
|- ( B e. NN -> B =/= 0 ) |
33 |
1 32
|
syl |
|- ( B e. ( ZZ>= ` 2 ) -> B =/= 0 ) |
34 |
33 8
|
nelprd |
|- ( B e. ( ZZ>= ` 2 ) -> -. B e. { 0 , 1 } ) |
35 |
34
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. B e. { 0 , 1 } ) |
36 |
31 35
|
eldifd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ( CC \ { 0 , 1 } ) ) |
37 |
|
eluzelcn |
|- ( X e. ( ZZ>= ` 2 ) -> X e. CC ) |
38 |
37
|
adantr |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> X e. CC ) |
39 |
|
nnne0 |
|- ( X e. NN -> X =/= 0 ) |
40 |
|
nelsn |
|- ( X =/= 0 -> -. X e. { 0 } ) |
41 |
4 39 40
|
3syl |
|- ( X e. ( ZZ>= ` 2 ) -> -. X e. { 0 } ) |
42 |
41
|
adantr |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> -. X e. { 0 } ) |
43 |
38 42
|
eldifd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> X e. ( CC \ { 0 } ) ) |
44 |
|
cxplogb |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) |
45 |
36 43 44
|
syl2anc |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( B ^c ( B logb X ) ) = X ) |
46 |
45
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B ^c ( B logb X ) ) = X ) |
47 |
29 46
|
sylan9eqr |
|- ( ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) /\ ( B logb X ) = ( m / n ) ) -> ( B ^c ( m / n ) ) = X ) |
48 |
47
|
ex |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B logb X ) = ( m / n ) -> ( B ^c ( m / n ) ) = X ) ) |
49 |
|
oveq1 |
|- ( ( B ^c ( m / n ) ) = X -> ( ( B ^c ( m / n ) ) ^ n ) = ( X ^ n ) ) |
50 |
31
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> B e. CC ) |
51 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
52 |
51
|
adantr |
|- ( ( m e. NN /\ n e. NN ) -> m e. CC ) |
53 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
54 |
53
|
adantl |
|- ( ( m e. NN /\ n e. NN ) -> n e. CC ) |
55 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
56 |
55
|
adantl |
|- ( ( m e. NN /\ n e. NN ) -> n =/= 0 ) |
57 |
52 54 56
|
3jca |
|- ( ( m e. NN /\ n e. NN ) -> ( m e. CC /\ n e. CC /\ n =/= 0 ) ) |
58 |
|
divcl |
|- ( ( m e. CC /\ n e. CC /\ n =/= 0 ) -> ( m / n ) e. CC ) |
59 |
57 58
|
syl |
|- ( ( m e. NN /\ n e. NN ) -> ( m / n ) e. CC ) |
60 |
59
|
adantl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( m / n ) e. CC ) |
61 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
62 |
61
|
adantl |
|- ( ( m e. NN /\ n e. NN ) -> n e. NN0 ) |
63 |
62
|
adantl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> n e. NN0 ) |
64 |
50 60 63
|
3jca |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B e. CC /\ ( m / n ) e. CC /\ n e. NN0 ) ) |
65 |
|
cxpmul2 |
|- ( ( B e. CC /\ ( m / n ) e. CC /\ n e. NN0 ) -> ( B ^c ( ( m / n ) x. n ) ) = ( ( B ^c ( m / n ) ) ^ n ) ) |
66 |
65
|
eqcomd |
|- ( ( B e. CC /\ ( m / n ) e. CC /\ n e. NN0 ) -> ( ( B ^c ( m / n ) ) ^ n ) = ( B ^c ( ( m / n ) x. n ) ) ) |
67 |
64 66
|
syl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B ^c ( m / n ) ) ^ n ) = ( B ^c ( ( m / n ) x. n ) ) ) |
68 |
57
|
adantl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( m e. CC /\ n e. CC /\ n =/= 0 ) ) |
69 |
|
divcan1 |
|- ( ( m e. CC /\ n e. CC /\ n =/= 0 ) -> ( ( m / n ) x. n ) = m ) |
70 |
68 69
|
syl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( m / n ) x. n ) = m ) |
71 |
70
|
oveq2d |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B ^c ( ( m / n ) x. n ) ) = ( B ^c m ) ) |
72 |
33
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B =/= 0 ) |
73 |
72
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> B =/= 0 ) |
74 |
|
nnz |
|- ( m e. NN -> m e. ZZ ) |
75 |
74
|
adantr |
|- ( ( m e. NN /\ n e. NN ) -> m e. ZZ ) |
76 |
75
|
adantl |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> m e. ZZ ) |
77 |
50 73 76
|
cxpexpzd |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B ^c m ) = ( B ^ m ) ) |
78 |
71 77
|
eqtrd |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B ^c ( ( m / n ) x. n ) ) = ( B ^ m ) ) |
79 |
67 78
|
eqtrd |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B ^c ( m / n ) ) ^ n ) = ( B ^ m ) ) |
80 |
79
|
eqeq1d |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( B ^c ( m / n ) ) ^ n ) = ( X ^ n ) <-> ( B ^ m ) = ( X ^ n ) ) ) |
81 |
|
simpr |
|- ( ( m e. NN /\ n e. NN ) -> n e. NN ) |
82 |
|
rplpwr |
|- ( ( X e. NN /\ B e. NN /\ n e. NN ) -> ( ( X gcd B ) = 1 -> ( ( X ^ n ) gcd B ) = 1 ) ) |
83 |
15 17 81 82
|
syl2an3an |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( X gcd B ) = 1 -> ( ( X ^ n ) gcd B ) = 1 ) ) |
84 |
|
oveq1 |
|- ( ( X ^ n ) = ( B ^ m ) -> ( ( X ^ n ) gcd B ) = ( ( B ^ m ) gcd B ) ) |
85 |
84
|
eqeq1d |
|- ( ( X ^ n ) = ( B ^ m ) -> ( ( ( X ^ n ) gcd B ) = 1 <-> ( ( B ^ m ) gcd B ) = 1 ) ) |
86 |
85
|
eqcoms |
|- ( ( B ^ m ) = ( X ^ n ) -> ( ( ( X ^ n ) gcd B ) = 1 <-> ( ( B ^ m ) gcd B ) = 1 ) ) |
87 |
86
|
adantl |
|- ( ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) /\ ( B ^ m ) = ( X ^ n ) ) -> ( ( ( X ^ n ) gcd B ) = 1 <-> ( ( B ^ m ) gcd B ) = 1 ) ) |
88 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
89 |
88
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> B e. ZZ ) |
90 |
|
simpl |
|- ( ( m e. NN /\ n e. NN ) -> m e. NN ) |
91 |
|
rpexp |
|- ( ( B e. ZZ /\ B e. ZZ /\ m e. NN ) -> ( ( ( B ^ m ) gcd B ) = 1 <-> ( B gcd B ) = 1 ) ) |
92 |
89 89 90 91
|
syl2an3an |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( B ^ m ) gcd B ) = 1 <-> ( B gcd B ) = 1 ) ) |
93 |
|
gcdid |
|- ( B e. ZZ -> ( B gcd B ) = ( abs ` B ) ) |
94 |
88 93
|
syl |
|- ( B e. ( ZZ>= ` 2 ) -> ( B gcd B ) = ( abs ` B ) ) |
95 |
|
eluzelre |
|- ( B e. ( ZZ>= ` 2 ) -> B e. RR ) |
96 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
97 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
98 |
1 96 97
|
3syl |
|- ( B e. ( ZZ>= ` 2 ) -> 0 <_ B ) |
99 |
95 98
|
absidd |
|- ( B e. ( ZZ>= ` 2 ) -> ( abs ` B ) = B ) |
100 |
94 99
|
eqtrd |
|- ( B e. ( ZZ>= ` 2 ) -> ( B gcd B ) = B ) |
101 |
100
|
eqeq1d |
|- ( B e. ( ZZ>= ` 2 ) -> ( ( B gcd B ) = 1 <-> B = 1 ) ) |
102 |
101
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( B gcd B ) = 1 <-> B = 1 ) ) |
103 |
102
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B gcd B ) = 1 <-> B = 1 ) ) |
104 |
|
eqneqall |
|- ( B = 1 -> ( B =/= 1 -> -. ( X gcd B ) = 1 ) ) |
105 |
8 104
|
syl5com |
|- ( B e. ( ZZ>= ` 2 ) -> ( B = 1 -> -. ( X gcd B ) = 1 ) ) |
106 |
105
|
adantl |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( B = 1 -> -. ( X gcd B ) = 1 ) ) |
107 |
106
|
adantr |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( B = 1 -> -. ( X gcd B ) = 1 ) ) |
108 |
103 107
|
sylbid |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B gcd B ) = 1 -> -. ( X gcd B ) = 1 ) ) |
109 |
92 108
|
sylbid |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( B ^ m ) gcd B ) = 1 -> -. ( X gcd B ) = 1 ) ) |
110 |
109
|
adantr |
|- ( ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) /\ ( B ^ m ) = ( X ^ n ) ) -> ( ( ( B ^ m ) gcd B ) = 1 -> -. ( X gcd B ) = 1 ) ) |
111 |
87 110
|
sylbid |
|- ( ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) /\ ( B ^ m ) = ( X ^ n ) ) -> ( ( ( X ^ n ) gcd B ) = 1 -> -. ( X gcd B ) = 1 ) ) |
112 |
111
|
ex |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B ^ m ) = ( X ^ n ) -> ( ( ( X ^ n ) gcd B ) = 1 -> -. ( X gcd B ) = 1 ) ) ) |
113 |
112
|
com23 |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( X ^ n ) gcd B ) = 1 -> ( ( B ^ m ) = ( X ^ n ) -> -. ( X gcd B ) = 1 ) ) ) |
114 |
83 113
|
syld |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( X gcd B ) = 1 -> ( ( B ^ m ) = ( X ^ n ) -> -. ( X gcd B ) = 1 ) ) ) |
115 |
|
ax-1 |
|- ( -. ( X gcd B ) = 1 -> ( ( B ^ m ) = ( X ^ n ) -> -. ( X gcd B ) = 1 ) ) |
116 |
114 115
|
pm2.61d1 |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B ^ m ) = ( X ^ n ) -> -. ( X gcd B ) = 1 ) ) |
117 |
80 116
|
sylbid |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( ( B ^c ( m / n ) ) ^ n ) = ( X ^ n ) -> -. ( X gcd B ) = 1 ) ) |
118 |
49 117
|
syl5 |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B ^c ( m / n ) ) = X -> -. ( X gcd B ) = 1 ) ) |
119 |
48 118
|
syld |
|- ( ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) /\ ( m e. NN /\ n e. NN ) ) -> ( ( B logb X ) = ( m / n ) -> -. ( X gcd B ) = 1 ) ) |
120 |
119
|
rexlimdvva |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( E. m e. NN E. n e. NN ( B logb X ) = ( m / n ) -> -. ( X gcd B ) = 1 ) ) |
121 |
27 120
|
syld |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( B logb X ) e. QQ -> -. ( X gcd B ) = 1 ) ) |
122 |
121
|
con2d |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) ) -> ( ( X gcd B ) = 1 -> -. ( B logb X ) e. QQ ) ) |
123 |
122
|
3impia |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> -. ( B logb X ) e. QQ ) |
124 |
12 123
|
eldifd |
|- ( ( X e. ( ZZ>= ` 2 ) /\ B e. ( ZZ>= ` 2 ) /\ ( X gcd B ) = 1 ) -> ( B logb X ) e. ( RR \ QQ ) ) |