Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
2 |
1
|
adantr |
|- ( ( B e. RR+ /\ 1 < B ) -> B e. CC ) |
3 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
4 |
3
|
adantr |
|- ( ( B e. RR+ /\ 1 < B ) -> B =/= 0 ) |
5 |
|
1red |
|- ( B e. RR+ -> 1 e. RR ) |
6 |
|
ltne |
|- ( ( 1 e. RR /\ 1 < B ) -> B =/= 1 ) |
7 |
5 6
|
sylan |
|- ( ( B e. RR+ /\ 1 < B ) -> B =/= 1 ) |
8 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
9 |
2 4 7 8
|
syl3anbrc |
|- ( ( B e. RR+ /\ 1 < B ) -> B e. ( CC \ { 0 , 1 } ) ) |
10 |
|
rpcndif0 |
|- ( A e. RR+ -> A e. ( CC \ { 0 } ) ) |
11 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
12 |
9 10 11
|
syl2anr |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
13 |
12
|
breq2d |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( 0 < ( B logb A ) <-> 0 < ( ( log ` A ) / ( log ` B ) ) ) ) |
14 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
15 |
14
|
adantr |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( log ` A ) e. RR ) |
16 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
17 |
16
|
adantr |
|- ( ( B e. RR+ /\ 1 < B ) -> ( log ` B ) e. RR ) |
18 |
17
|
adantl |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( log ` B ) e. RR ) |
19 |
|
loggt0b |
|- ( B e. RR+ -> ( 0 < ( log ` B ) <-> 1 < B ) ) |
20 |
19
|
biimpar |
|- ( ( B e. RR+ /\ 1 < B ) -> 0 < ( log ` B ) ) |
21 |
20
|
adantl |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> 0 < ( log ` B ) ) |
22 |
|
gt0div |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR /\ 0 < ( log ` B ) ) -> ( 0 < ( log ` A ) <-> 0 < ( ( log ` A ) / ( log ` B ) ) ) ) |
23 |
15 18 21 22
|
syl3anc |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( 0 < ( log ` A ) <-> 0 < ( ( log ` A ) / ( log ` B ) ) ) ) |
24 |
|
loggt0b |
|- ( A e. RR+ -> ( 0 < ( log ` A ) <-> 1 < A ) ) |
25 |
24
|
adantr |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( 0 < ( log ` A ) <-> 1 < A ) ) |
26 |
13 23 25
|
3bitr2d |
|- ( ( A e. RR+ /\ ( B e. RR+ /\ 1 < B ) ) -> ( 0 < ( B logb A ) <-> 1 < A ) ) |