| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
| 2 |
1
|
oveq1d |
|- ( N e. NN -> ( ( 0 ^ N ) gcd 0 ) = ( 0 gcd 0 ) ) |
| 3 |
2
|
eqeq1d |
|- ( N e. NN -> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
| 4 |
|
oveq1 |
|- ( A = 0 -> ( A ^ N ) = ( 0 ^ N ) ) |
| 5 |
|
oveq12 |
|- ( ( ( A ^ N ) = ( 0 ^ N ) /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
| 6 |
4 5
|
sylan |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A ^ N ) gcd B ) = ( ( 0 ^ N ) gcd 0 ) ) |
| 7 |
6
|
eqeq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( ( 0 ^ N ) gcd 0 ) = 1 ) ) |
| 8 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
| 9 |
8
|
eqeq1d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) |
| 10 |
7 9
|
bibi12d |
|- ( ( A = 0 /\ B = 0 ) -> ( ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) <-> ( ( ( 0 ^ N ) gcd 0 ) = 1 <-> ( 0 gcd 0 ) = 1 ) ) ) |
| 11 |
3 10
|
syl5ibrcom |
|- ( N e. NN -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 12 |
11
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 13 |
|
exprmfct |
|- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( ( A ^ N ) gcd B ) ) |
| 14 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. ZZ ) |
| 15 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN ) |
| 16 |
15
|
nnnn0d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> N e. NN0 ) |
| 17 |
|
zexpcl |
|- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
| 18 |
14 16 17
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A ^ N ) e. ZZ ) |
| 19 |
18
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A ^ N ) e. ZZ ) |
| 20 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> B e. ZZ ) |
| 21 |
20
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> B e. ZZ ) |
| 22 |
|
gcddvds |
|- ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
| 23 |
19 21 22
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( ( A ^ N ) gcd B ) || ( A ^ N ) /\ ( ( A ^ N ) gcd B ) || B ) ) |
| 24 |
23
|
simpld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || ( A ^ N ) ) |
| 25 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 26 |
25
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. ZZ ) |
| 27 |
|
simpr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
| 28 |
14
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. CC ) |
| 29 |
|
expeq0 |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
| 30 |
28 15 29
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |
| 31 |
30
|
anbi1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) = 0 /\ B = 0 ) <-> ( A = 0 /\ B = 0 ) ) ) |
| 32 |
27 31
|
mtbird |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( ( A ^ N ) = 0 /\ B = 0 ) ) |
| 33 |
|
gcdn0cl |
|- ( ( ( ( A ^ N ) e. ZZ /\ B e. ZZ ) /\ -. ( ( A ^ N ) = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
| 34 |
18 20 32 33
|
syl21anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. NN ) |
| 35 |
34
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
| 36 |
35
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) e. ZZ ) |
| 37 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 38 |
26 36 19 37
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 39 |
24 38
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || ( A ^ N ) ) ) |
| 40 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> p e. Prime ) |
| 41 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A e. ZZ ) |
| 42 |
15
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> N e. NN ) |
| 43 |
|
prmdvdsexp |
|- ( ( p e. Prime /\ A e. ZZ /\ N e. NN ) -> ( p || ( A ^ N ) <-> p || A ) ) |
| 44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A ^ N ) <-> p || A ) ) |
| 45 |
39 44
|
sylibd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || A ) ) |
| 46 |
23
|
simprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A ^ N ) gcd B ) || B ) |
| 47 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( A ^ N ) gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
| 48 |
26 36 21 47
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( ( A ^ N ) gcd B ) /\ ( ( A ^ N ) gcd B ) || B ) -> p || B ) ) |
| 49 |
46 48
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> p || B ) ) |
| 50 |
45 49
|
jcad |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( p || A /\ p || B ) ) ) |
| 51 |
|
dvdsgcd |
|- ( ( p e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
| 52 |
26 41 21 51
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || A /\ p || B ) -> p || ( A gcd B ) ) ) |
| 53 |
|
nprmdvds1 |
|- ( p e. Prime -> -. p || 1 ) |
| 54 |
|
breq2 |
|- ( ( A gcd B ) = 1 -> ( p || ( A gcd B ) <-> p || 1 ) ) |
| 55 |
54
|
notbid |
|- ( ( A gcd B ) = 1 -> ( -. p || ( A gcd B ) <-> -. p || 1 ) ) |
| 56 |
53 55
|
syl5ibrcom |
|- ( p e. Prime -> ( ( A gcd B ) = 1 -> -. p || ( A gcd B ) ) ) |
| 57 |
56
|
necon2ad |
|- ( p e. Prime -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 58 |
57
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 59 |
50 52 58
|
3syld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 60 |
59
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) =/= 1 ) ) |
| 61 |
|
gcdn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
| 62 |
61
|
3adantl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
| 63 |
|
eluz2b3 |
|- ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A gcd B ) e. NN /\ ( A gcd B ) =/= 1 ) ) |
| 64 |
63
|
baib |
|- ( ( A gcd B ) e. NN -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
| 65 |
62 64
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) =/= 1 ) ) |
| 66 |
60 65
|
sylibrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( ( A ^ N ) gcd B ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 67 |
13 66
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) -> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 68 |
|
exprmfct |
|- ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( A gcd B ) ) |
| 69 |
62
|
nnzd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. ZZ ) |
| 70 |
69
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) e. ZZ ) |
| 71 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 72 |
41 21 71
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 73 |
72
|
simpld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || A ) |
| 74 |
|
iddvdsexp |
|- ( ( A e. ZZ /\ N e. NN ) -> A || ( A ^ N ) ) |
| 75 |
41 42 74
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> A || ( A ^ N ) ) |
| 76 |
70 41 19 73 75
|
dvdstrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || ( A ^ N ) ) |
| 77 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ ( A ^ N ) e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 78 |
26 70 19 77
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || ( A ^ N ) ) -> p || ( A ^ N ) ) ) |
| 79 |
76 78
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || ( A ^ N ) ) ) |
| 80 |
72
|
simprd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( A gcd B ) || B ) |
| 81 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( A gcd B ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
| 82 |
26 70 21 81
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A gcd B ) /\ ( A gcd B ) || B ) -> p || B ) ) |
| 83 |
80 82
|
mpan2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> p || B ) ) |
| 84 |
79 83
|
jcad |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( p || ( A ^ N ) /\ p || B ) ) ) |
| 85 |
|
dvdsgcd |
|- ( ( p e. ZZ /\ ( A ^ N ) e. ZZ /\ B e. ZZ ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
| 86 |
26 19 21 85
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( ( p || ( A ^ N ) /\ p || B ) -> p || ( ( A ^ N ) gcd B ) ) ) |
| 87 |
|
breq2 |
|- ( ( ( A ^ N ) gcd B ) = 1 -> ( p || ( ( A ^ N ) gcd B ) <-> p || 1 ) ) |
| 88 |
87
|
notbid |
|- ( ( ( A ^ N ) gcd B ) = 1 -> ( -. p || ( ( A ^ N ) gcd B ) <-> -. p || 1 ) ) |
| 89 |
53 88
|
syl5ibrcom |
|- ( p e. Prime -> ( ( ( A ^ N ) gcd B ) = 1 -> -. p || ( ( A ^ N ) gcd B ) ) ) |
| 90 |
89
|
necon2ad |
|- ( p e. Prime -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 91 |
90
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( ( A ^ N ) gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 92 |
84 86 91
|
3syld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) /\ p e. Prime ) -> ( p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 93 |
92
|
rexlimdva |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 94 |
|
eluz2b3 |
|- ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( ( A ^ N ) gcd B ) e. NN /\ ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 95 |
94
|
baib |
|- ( ( ( A ^ N ) gcd B ) e. NN -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 96 |
34 95
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( ( A ^ N ) gcd B ) =/= 1 ) ) |
| 97 |
93 96
|
sylibrd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( E. p e. Prime p || ( A gcd B ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 98 |
68 97
|
syl5 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A gcd B ) e. ( ZZ>= ` 2 ) -> ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 99 |
67 98
|
impbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) e. ( ZZ>= ` 2 ) <-> ( A gcd B ) e. ( ZZ>= ` 2 ) ) ) |
| 100 |
99 96 65
|
3bitr3d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) =/= 1 <-> ( A gcd B ) =/= 1 ) ) |
| 101 |
100
|
necon4bid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |
| 102 |
101
|
ex |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( -. ( A = 0 /\ B = 0 ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) ) |
| 103 |
12 102
|
pm2.61d |
|- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 <-> ( A gcd B ) = 1 ) ) |