Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndinl | ⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ ( inl ‘ 𝑋 ) ) = 𝑋 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-inl | ⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) | |
| 2 | opeq2 | ⊢ ( 𝑥 = 𝑋 → 〈 ∅ , 𝑥 〉 = 〈 ∅ , 𝑋 〉 ) | |
| 3 | elex | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) | |
| 4 | opex | ⊢ 〈 ∅ , 𝑋 〉 ∈ V | |
| 5 | 4 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → 〈 ∅ , 𝑋 〉 ∈ V ) | 
| 6 | 1 2 3 5 | fvmptd3 | ⊢ ( 𝑋 ∈ 𝑉 → ( inl ‘ 𝑋 ) = 〈 ∅ , 𝑋 〉 ) | 
| 7 | 6 | fveq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ ( inl ‘ 𝑋 ) ) = ( 2nd ‘ 〈 ∅ , 𝑋 〉 ) ) | 
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | op2ndg | ⊢ ( ( ∅ ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 〈 ∅ , 𝑋 〉 ) = 𝑋 ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ 〈 ∅ , 𝑋 〉 ) = 𝑋 ) | 
| 11 | 7 10 | eqtrd | ⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ ( inl ‘ 𝑋 ) ) = 𝑋 ) |