| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pthfrgrrn.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 2pthfrgrrn.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | 2pthfrgrrn | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ∃ 𝑏  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 ) ) | 
						
							| 4 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 5 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑎 ,  𝑏 }  ∈  𝐸 )  →  𝑎  ≠  𝑏 ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑎 ,  𝑏 }  ∈  𝐸  →  𝑎  ≠  𝑏 ) ) | 
						
							| 7 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  𝑏  ≠  𝑐 ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑏 ,  𝑐 }  ∈  𝐸  →  𝑏  ≠  𝑐 ) ) | 
						
							| 9 | 6 8 | anim12d | ⊢ ( 𝐺  ∈  USGraph  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ) )  ∧  𝑏  ∈  𝑉 )  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) | 
						
							| 12 | 11 | ancld | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ) )  ∧  𝑏  ∈  𝑉 )  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) ) | 
						
							| 13 | 12 | reximdva | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝑉  ∧  𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ) )  →  ( ∃ 𝑏  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ∃ 𝑏  ∈  𝑉 ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) ) | 
						
							| 14 | 13 | ralimdvva | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ∃ 𝑏  ∈  𝑉 ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  →  ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ∃ 𝑏  ∈  𝑉 ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) ) | 
						
							| 15 | 3 14 | mpd | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑎  ∈  𝑉 ∀ 𝑐  ∈  ( 𝑉  ∖  { 𝑎 } ) ∃ 𝑏  ∈  𝑉 ( ( { 𝑎 ,  𝑏 }  ∈  𝐸  ∧  { 𝑏 ,  𝑐 }  ∈  𝐸 )  ∧  ( 𝑎  ≠  𝑏  ∧  𝑏  ≠  𝑐 ) ) ) |