Description: A double specialization using explicit substitution. This is Theorem PM*11.1 in WhiteheadRussell p. 159. See stdpc4 for the analogous single specialization. See 2sp for another double specialization. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2stdpc4 | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc4 | ⊢ ( ∀ 𝑦 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) |
| 3 | stdpc4 | ⊢ ( ∀ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |