Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantll2.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| Assertion | 3adantll2 | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantll2.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) | |
| 2 | simpll1 | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜑 ) | |
| 3 | simpll3 | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜓 ) | |
| 4 | 2 3 | jca | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → ( 𝜑 ∧ 𝜓 ) ) |
| 5 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜒 ) | |
| 6 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜃 ) | |
| 7 | 4 5 6 1 | syl21anc | ⊢ ( ( ( ( 𝜑 ∧ 𝜂 ∧ 𝜓 ) ∧ 𝜒 ) ∧ 𝜃 ) → 𝜏 ) |