Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantll2.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
| Assertion | 3adantll2 | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantll2.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
| 2 | simpll1 | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ph ) |
|
| 3 | simpll3 | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ps ) |
|
| 4 | 2 3 | jca | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ( ph /\ ps ) ) |
| 5 | simplr | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ch ) |
|
| 6 | simpr | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> th ) |
|
| 7 | 4 5 6 1 | syl21anc | |- ( ( ( ( ph /\ et /\ ps ) /\ ch ) /\ th ) -> ta ) |