Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adantll3.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
Assertion | 3adantll3 | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adantll3.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
2 | simpll1 | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ph ) |
|
3 | simpll2 | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ps ) |
|
4 | 2 3 | jca | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ( ph /\ ps ) ) |
5 | simplr | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ch ) |
|
6 | simpr | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> th ) |
|
7 | 4 5 6 1 | syl21anc | |- ( ( ( ( ph /\ ps /\ et ) /\ ch ) /\ th ) -> ta ) |