Metamath Proof Explorer


Theorem 3adantll3

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis 3adantll3.1 φψχθτ
Assertion 3adantll3 φψηχθτ

Proof

Step Hyp Ref Expression
1 3adantll3.1 φψχθτ
2 simpll1 φψηχθφ
3 simpll2 φψηχθψ
4 2 3 jca φψηχθφψ
5 simplr φψηχθχ
6 simpr φψηχθθ
7 4 5 6 1 syl21anc φψηχθτ