Description: Idempotent law for conjunction. (Contributed by Peter Mazsa, 17-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ ( ( 𝜑 ∧ 𝜑 ) ∧ 𝜑 ) ) | |
| 2 | anabs1 | ⊢ ( ( ( 𝜑 ∧ 𝜑 ) ∧ 𝜑 ) ↔ ( 𝜑 ∧ 𝜑 ) ) | |
| 3 | anidm | ⊢ ( ( 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) | |
| 4 | 1 2 3 | 3bitri | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜑 ) ↔ 𝜑 ) |