| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 2 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 3 | 2 | mullidi | ⊢ ( 1  ·  2 )  =  2 | 
						
							| 4 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 5 | 3 4 | eqbrtri | ⊢ ( 1  ·  2 )  <  3 | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 |  | 2pos | ⊢ 0  <  2 | 
						
							| 10 | 8 9 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 11 |  | ltmuldiv | ⊢ ( ( 1  ∈  ℝ  ∧  3  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 1  ·  2 )  <  3  ↔  1  <  ( 3  /  2 ) ) ) | 
						
							| 12 | 6 7 10 11 | mp3an | ⊢ ( ( 1  ·  2 )  <  3  ↔  1  <  ( 3  /  2 ) ) | 
						
							| 13 | 5 12 | mpbi | ⊢ 1  <  ( 3  /  2 ) | 
						
							| 14 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 15 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 16 | 15 | breq2i | ⊢ ( 3  <  ( 2  ·  2 )  ↔  3  <  4 ) | 
						
							| 17 | 14 16 | mpbir | ⊢ 3  <  ( 2  ·  2 ) | 
						
							| 18 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 19 | 18 | breq2i | ⊢ ( ( 3  /  2 )  <  ( 1  +  1 )  ↔  ( 3  /  2 )  <  2 ) | 
						
							| 20 |  | ltdivmul | ⊢ ( ( 3  ∈  ℝ  ∧  2  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 3  /  2 )  <  2  ↔  3  <  ( 2  ·  2 ) ) ) | 
						
							| 21 | 7 8 10 20 | mp3an | ⊢ ( ( 3  /  2 )  <  2  ↔  3  <  ( 2  ·  2 ) ) | 
						
							| 22 | 19 21 | bitri | ⊢ ( ( 3  /  2 )  <  ( 1  +  1 )  ↔  3  <  ( 2  ·  2 ) ) | 
						
							| 23 | 17 22 | mpbir | ⊢ ( 3  /  2 )  <  ( 1  +  1 ) | 
						
							| 24 |  | btwnnz | ⊢ ( ( 1  ∈  ℤ  ∧  1  <  ( 3  /  2 )  ∧  ( 3  /  2 )  <  ( 1  +  1 ) )  →  ¬  ( 3  /  2 )  ∈  ℤ ) | 
						
							| 25 | 1 13 23 24 | mp3an | ⊢ ¬  ( 3  /  2 )  ∈  ℤ |