Description: Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3o1cs.1 | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → 𝜃 ) | |
| Assertion | 3o3cs | ⊢ ( 𝜒 → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3o1cs.1 | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) → 𝜃 ) | |
| 2 | df-3or | ⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 3 | 2 1 | sylbir | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → 𝜃 ) |
| 4 | 3 | olcs | ⊢ ( 𝜒 → 𝜃 ) |