Metamath Proof Explorer


Theorem 3xpfi

Description: The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018)

Ref Expression
Assertion 3xpfi ( 𝑉 ∈ Fin → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 xpfi ( ( 𝑉 ∈ Fin ∧ 𝑉 ∈ Fin ) → ( 𝑉 × 𝑉 ) ∈ Fin )
2 1 anidms ( 𝑉 ∈ Fin → ( 𝑉 × 𝑉 ) ∈ Fin )
3 xpfi ( ( ( 𝑉 × 𝑉 ) ∈ Fin ∧ 𝑉 ∈ Fin ) → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ Fin )
4 2 3 mpancom ( 𝑉 ∈ Fin → ( ( 𝑉 × 𝑉 ) × 𝑉 ) ∈ Fin )