| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ensym |
⊢ ( 𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵 ) |
| 2 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝐵 ≈ 𝐴 → ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 4 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
| 5 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 7 |
6
|
anbi1d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 8 |
|
uneq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ∪ 𝑋 ) = ( ∅ ∪ 𝑋 ) ) |
| 9 |
|
imaeq2 |
⊢ ( 𝑎 = ∅ → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ∅ ) ) |
| 10 |
9
|
uneq1d |
⊢ ( 𝑎 = ∅ → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) |
| 11 |
8 10
|
breq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ) ) |
| 12 |
11
|
bibi1d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 13 |
7 12
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 14 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝐴 ↔ 𝑏 ⊆ 𝐴 ) ) |
| 15 |
14
|
anbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 16 |
15
|
anbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 17 |
|
uneq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ∪ 𝑋 ) = ( 𝑏 ∪ 𝑋 ) ) |
| 18 |
|
imaeq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝑏 ) ) |
| 19 |
18
|
uneq1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 20 |
17 19
|
breq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 21 |
20
|
bibi1d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 22 |
16 21
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 23 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝐴 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ) ) |
| 24 |
23
|
anbi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 25 |
24
|
anbi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 26 |
|
uneq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ∪ 𝑋 ) = ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ) |
| 27 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ) |
| 28 |
27
|
uneq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) |
| 29 |
26 28
|
breq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ) ) |
| 30 |
29
|
bibi1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 31 |
25 30
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 32 |
|
sseq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 33 |
32
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) ) |
| 34 |
33
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ↔ ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) ) |
| 35 |
|
uneq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∪ 𝑋 ) = ( 𝐴 ∪ 𝑋 ) ) |
| 36 |
|
imaeq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑓 “ 𝑎 ) = ( 𝑓 “ 𝐴 ) ) |
| 37 |
36
|
uneq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) = ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) |
| 38 |
35 37
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ) ) |
| 39 |
38
|
bibi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 40 |
34 39
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝑎 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑎 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑎 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ↔ ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 41 |
|
uncom |
⊢ ( ∅ ∪ 𝑋 ) = ( 𝑋 ∪ ∅ ) |
| 42 |
|
un0 |
⊢ ( 𝑋 ∪ ∅ ) = 𝑋 |
| 43 |
41 42
|
eqtri |
⊢ ( ∅ ∪ 𝑋 ) = 𝑋 |
| 44 |
|
ima0 |
⊢ ( 𝑓 “ ∅ ) = ∅ |
| 45 |
44
|
uneq1i |
⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = ( ∅ ∪ 𝑌 ) |
| 46 |
|
uncom |
⊢ ( ∅ ∪ 𝑌 ) = ( 𝑌 ∪ ∅ ) |
| 47 |
|
un0 |
⊢ ( 𝑌 ∪ ∅ ) = 𝑌 |
| 48 |
46 47
|
eqtri |
⊢ ( ∅ ∪ 𝑌 ) = 𝑌 |
| 49 |
45 48
|
eqtri |
⊢ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) = 𝑌 |
| 50 |
43 49
|
breq12i |
⊢ ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) |
| 51 |
50
|
a1i |
⊢ ( ( ( ∅ ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ∅ ∪ 𝑋 ) ≼ ( ( 𝑓 “ ∅ ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 52 |
|
ssun1 |
⊢ 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 53 |
|
sstr2 |
⊢ ( 𝑏 ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) ) |
| 54 |
52 53
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑏 ⊆ 𝐴 ) |
| 55 |
54
|
anim1i |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) |
| 56 |
55
|
anim1i |
⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) |
| 57 |
56
|
imim1i |
⊢ ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 58 |
|
uncom |
⊢ ( 𝑏 ∪ { 𝑐 } ) = ( { 𝑐 } ∪ 𝑏 ) |
| 59 |
58
|
uneq1i |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) |
| 60 |
|
unass |
⊢ ( ( { 𝑐 } ∪ 𝑏 ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) |
| 61 |
59 60
|
eqtri |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) |
| 62 |
61
|
a1i |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) = ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ) |
| 63 |
|
imaundi |
⊢ ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) |
| 64 |
|
simprlr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
| 65 |
|
f1ofn |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 Fn 𝐴 ) |
| 66 |
64 65
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 Fn 𝐴 ) |
| 67 |
|
ssun2 |
⊢ { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) |
| 68 |
|
sstr2 |
⊢ ( { 𝑐 } ⊆ ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) ) |
| 69 |
67 68
|
ax-mp |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → { 𝑐 } ⊆ 𝐴 ) |
| 70 |
|
vex |
⊢ 𝑐 ∈ V |
| 71 |
70
|
snss |
⊢ ( 𝑐 ∈ 𝐴 ↔ { 𝑐 } ⊆ 𝐴 ) |
| 72 |
69 71
|
sylibr |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 → 𝑐 ∈ 𝐴 ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑐 ∈ 𝐴 ) |
| 74 |
73
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑐 ∈ 𝐴 ) |
| 75 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑐 ∈ 𝐴 ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) |
| 76 |
66 74 75
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → { ( 𝑓 ‘ 𝑐 ) } = ( 𝑓 “ { 𝑐 } ) ) |
| 77 |
76
|
eqcomd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ { 𝑐 } ) = { ( 𝑓 ‘ 𝑐 ) } ) |
| 78 |
77
|
uneq2d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ 𝑏 ) ∪ ( 𝑓 “ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
| 79 |
63 78
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) = ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ) |
| 80 |
79
|
uneq1d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) ) |
| 81 |
|
uncom |
⊢ ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) |
| 82 |
81
|
uneq1i |
⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) |
| 83 |
|
unass |
⊢ ( ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( 𝑓 “ 𝑏 ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 84 |
82 83
|
eqtri |
⊢ ( ( ( 𝑓 “ 𝑏 ) ∪ { ( 𝑓 ‘ 𝑐 ) } ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 85 |
80 84
|
eqtrdi |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) = ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 86 |
62 85
|
breq12d |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) ) |
| 87 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑏 ) |
| 88 |
|
incom |
⊢ ( 𝑋 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑋 ) |
| 89 |
|
simprrl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐴 ∩ 𝑋 ) = ∅ ) |
| 90 |
88 89
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑋 ∩ 𝐴 ) = ∅ ) |
| 91 |
|
minel |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ ( 𝑋 ∩ 𝐴 ) = ∅ ) → ¬ 𝑐 ∈ 𝑋 ) |
| 92 |
74 90 91
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ 𝑋 ) |
| 93 |
|
ioran |
⊢ ( ¬ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) |
| 94 |
|
elun |
⊢ ( 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( 𝑐 ∈ 𝑏 ∨ 𝑐 ∈ 𝑋 ) ) |
| 95 |
93 94
|
xchnxbir |
⊢ ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ↔ ( ¬ 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑋 ) ) |
| 96 |
87 92 95
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ) |
| 97 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ 𝑐 ∈ 𝑏 ) |
| 98 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 99 |
98
|
adantl |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
| 100 |
54
|
adantr |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 101 |
|
f1elima |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑐 ∈ 𝐴 ∧ 𝑏 ⊆ 𝐴 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) |
| 102 |
99 73 100 101
|
syl3anc |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ↔ 𝑐 ∈ 𝑏 ) ) |
| 103 |
102
|
biimpd |
⊢ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
| 104 |
103
|
adantl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) → 𝑐 ∈ 𝑏 ) ) |
| 105 |
97 104
|
mtod |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
| 106 |
105
|
adantrr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ) |
| 107 |
|
f1of |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 108 |
64 107
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → 𝑓 : 𝐴 ⟶ 𝐵 ) |
| 109 |
108 74
|
ffvelcdmd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ) |
| 110 |
|
incom |
⊢ ( 𝑌 ∩ 𝐵 ) = ( 𝐵 ∩ 𝑌 ) |
| 111 |
|
simprrr |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝐵 ∩ 𝑌 ) = ∅ ) |
| 112 |
110 111
|
eqtrid |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( 𝑌 ∩ 𝐵 ) = ∅ ) |
| 113 |
|
minel |
⊢ ( ( ( 𝑓 ‘ 𝑐 ) ∈ 𝐵 ∧ ( 𝑌 ∩ 𝐵 ) = ∅ ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) |
| 114 |
109 112 113
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) |
| 115 |
|
ioran |
⊢ ( ¬ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
| 116 |
|
elun |
⊢ ( ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∨ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
| 117 |
115 116
|
xchnxbir |
⊢ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ ( ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( 𝑓 “ 𝑏 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ 𝑌 ) ) |
| 118 |
106 114 117
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) |
| 119 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑐 ) ∈ V |
| 120 |
70 119
|
domunsncan |
⊢ ( ( ¬ 𝑐 ∈ ( 𝑏 ∪ 𝑋 ) ∧ ¬ ( 𝑓 ‘ 𝑐 ) ∈ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 121 |
96 118 120
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( { 𝑐 } ∪ ( 𝑏 ∪ 𝑋 ) ) ≼ ( { ( 𝑓 ‘ 𝑐 ) } ∪ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 122 |
86 121
|
bitrd |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ) |
| 123 |
|
bitr |
⊢ ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) ∧ ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 124 |
123
|
ex |
⊢ ( ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 125 |
122 124
|
syl |
⊢ ( ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) ∧ ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 126 |
125
|
ex |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 127 |
126
|
a2d |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 128 |
57 127
|
syl5 |
⊢ ( ( 𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏 ) → ( ( ( ( 𝑏 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝑏 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝑏 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) → ( ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ∪ 𝑋 ) ≼ ( ( 𝑓 “ ( 𝑏 ∪ { 𝑐 } ) ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 129 |
13 22 31 40 51 128
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 130 |
129
|
expd |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐴 ⊆ 𝐴 ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 131 |
4 130
|
mpani |
⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 132 |
131
|
3imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 133 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 134 |
|
foima |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) |
| 135 |
133 134
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝐴 ) = 𝐵 ) |
| 136 |
135
|
uneq1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) = ( 𝐵 ∪ 𝑌 ) ) |
| 137 |
136
|
breq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ) ) |
| 138 |
137
|
bibi1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 139 |
138
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( ( 𝐴 ∪ 𝑋 ) ≼ ( ( 𝑓 “ 𝐴 ) ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ↔ ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) |
| 140 |
132 139
|
mpbid |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |
| 141 |
140
|
3exp |
⊢ ( 𝐴 ∈ Fin → ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 142 |
141
|
exlimdv |
⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 143 |
3 142
|
syl5 |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ≈ 𝐴 → ( ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) ) ) |
| 144 |
143
|
imp31 |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴 ) ∧ ( ( 𝐴 ∩ 𝑋 ) = ∅ ∧ ( 𝐵 ∩ 𝑌 ) = ∅ ) ) → ( ( 𝐴 ∪ 𝑋 ) ≼ ( 𝐵 ∪ 𝑌 ) ↔ 𝑋 ≼ 𝑌 ) ) |