Metamath Proof Explorer


Theorem 4cycl2v2nb

Description: In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Assertion 4cycl2v2nb ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) → ( { { 𝐴 , 𝐵 } , { 𝐵 , 𝐶 } } ⊆ 𝐸 ∧ { { 𝐴 , 𝐷 } , { 𝐷 , 𝐶 } } ⊆ 𝐸 ) )

Proof

Step Hyp Ref Expression
1 prssi ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → { { 𝐴 , 𝐵 } , { 𝐵 , 𝐶 } } ⊆ 𝐸 )
2 prcom { 𝐷 , 𝐴 } = { 𝐴 , 𝐷 }
3 2 eleq1i ( { 𝐷 , 𝐴 } ∈ 𝐸 ↔ { 𝐴 , 𝐷 } ∈ 𝐸 )
4 3 biimpi ( { 𝐷 , 𝐴 } ∈ 𝐸 → { 𝐴 , 𝐷 } ∈ 𝐸 )
5 prcom { 𝐶 , 𝐷 } = { 𝐷 , 𝐶 }
6 5 eleq1i ( { 𝐶 , 𝐷 } ∈ 𝐸 ↔ { 𝐷 , 𝐶 } ∈ 𝐸 )
7 6 biimpi ( { 𝐶 , 𝐷 } ∈ 𝐸 → { 𝐷 , 𝐶 } ∈ 𝐸 )
8 prssi ( ( { 𝐴 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐶 } ∈ 𝐸 ) → { { 𝐴 , 𝐷 } , { 𝐷 , 𝐶 } } ⊆ 𝐸 )
9 4 7 8 syl2anr ( ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) → { { 𝐴 , 𝐷 } , { 𝐷 , 𝐶 } } ⊆ 𝐸 )
10 1 9 anim12i ( ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ∧ ( { 𝐶 , 𝐷 } ∈ 𝐸 ∧ { 𝐷 , 𝐴 } ∈ 𝐸 ) ) → ( { { 𝐴 , 𝐵 } , { 𝐵 , 𝐶 } } ⊆ 𝐸 ∧ { { 𝐴 , 𝐷 } , { 𝐷 , 𝐶 } } ⊆ 𝐸 ) )