Metamath Proof Explorer


Theorem 4noncolr1

Description: A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012)

Ref Expression
Hypotheses 3noncol.l = ( le ‘ 𝐾 )
3noncol.j = ( join ‘ 𝐾 )
3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 4noncolr1 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑆𝑃 ∧ ¬ 𝑄 ( 𝑆 𝑃 ) ∧ ¬ 𝑅 ( ( 𝑆 𝑃 ) 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 3noncol.l = ( le ‘ 𝐾 )
2 3noncol.j = ( join ‘ 𝐾 )
3 3noncol.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝐾 ∈ HL )
5 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑄𝐴 )
6 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑅𝐴 )
7 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑆𝐴 )
8 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → 𝑃𝐴 )
9 1 2 3 4noncolr3 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑃 ( ( 𝑄 𝑅 ) 𝑆 ) ) )
10 1 2 3 4noncolr2 ( ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) ∧ ( 𝑆𝐴𝑃𝐴 ) ∧ ( 𝑄𝑅 ∧ ¬ 𝑆 ( 𝑄 𝑅 ) ∧ ¬ 𝑃 ( ( 𝑄 𝑅 ) 𝑆 ) ) ) → ( 𝑆𝑃 ∧ ¬ 𝑄 ( 𝑆 𝑃 ) ∧ ¬ 𝑅 ( ( 𝑆 𝑃 ) 𝑄 ) ) )
11 4 5 6 7 8 9 10 syl321anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( ( 𝑃 𝑄 ) 𝑅 ) ) ) → ( 𝑆𝑃 ∧ ¬ 𝑄 ( 𝑆 𝑃 ) ∧ ¬ 𝑅 ( ( 𝑆 𝑃 ) 𝑄 ) ) )