Metamath Proof Explorer


Theorem 5ndvds3

Description: 5 does not divide 3. (Contributed by AV, 8-Sep-2025)

Ref Expression
Assertion 5ndvds3 ¬ 5 ∥ 3

Proof

Step Hyp Ref Expression
1 5nn 5 ∈ ℕ
2 0nn0 0 ∈ ℕ0
3 3nn 3 ∈ ℕ
4 5cn 5 ∈ ℂ
5 4 mul01i ( 5 · 0 ) = 0
6 5 oveq1i ( ( 5 · 0 ) + 3 ) = ( 0 + 3 )
7 3cn 3 ∈ ℂ
8 7 addlidi ( 0 + 3 ) = 3
9 6 8 eqtri ( ( 5 · 0 ) + 3 ) = 3
10 3lt5 3 < 5
11 1 2 3 9 10 ndvdsi ¬ 5 ∥ 3