Metamath Proof Explorer


Theorem 5ndvds6

Description: 5 does not divide 6. (Contributed by AV, 8-Sep-2025)

Ref Expression
Assertion 5ndvds6 ¬ 5 ∥ 6

Proof

Step Hyp Ref Expression
1 5nn 5 ∈ ℕ
2 1nn0 1 ∈ ℕ0
3 1nn 1 ∈ ℕ
4 5cn 5 ∈ ℂ
5 4 mulridi ( 5 · 1 ) = 5
6 5 oveq1i ( ( 5 · 1 ) + 1 ) = ( 5 + 1 )
7 5p1e6 ( 5 + 1 ) = 6
8 6 7 eqtri ( ( 5 · 1 ) + 1 ) = 6
9 1lt5 1 < 5
10 1 2 3 8 9 ndvdsi ¬ 5 ∥ 6