Metamath Proof Explorer


Theorem 5ndvds6

Description: 5 does not divide 6. (Contributed by AV, 8-Sep-2025)

Ref Expression
Assertion 5ndvds6
|- -. 5 || 6

Proof

Step Hyp Ref Expression
1 5nn
 |-  5 e. NN
2 1nn0
 |-  1 e. NN0
3 1nn
 |-  1 e. NN
4 5cn
 |-  5 e. CC
5 4 mulridi
 |-  ( 5 x. 1 ) = 5
6 5 oveq1i
 |-  ( ( 5 x. 1 ) + 1 ) = ( 5 + 1 )
7 5p1e6
 |-  ( 5 + 1 ) = 6
8 6 7 eqtri
 |-  ( ( 5 x. 1 ) + 1 ) = 6
9 1lt5
 |-  1 < 5
10 1 2 3 8 9 ndvdsi
 |-  -. 5 || 6