| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( N = ( ( 2 x. M ) + 1 ) -> ( N / 4 ) = ( ( ( 2 x. M ) + 1 ) / 4 ) ) | 
						
							| 2 |  | 2cnd |  |-  ( M e. ZZ -> 2 e. CC ) | 
						
							| 3 |  | zcn |  |-  ( M e. ZZ -> M e. CC ) | 
						
							| 4 | 2 3 | mulcld |  |-  ( M e. ZZ -> ( 2 x. M ) e. CC ) | 
						
							| 5 |  | 1cnd |  |-  ( M e. ZZ -> 1 e. CC ) | 
						
							| 6 |  | 4cn |  |-  4 e. CC | 
						
							| 7 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 8 | 6 7 | pm3.2i |  |-  ( 4 e. CC /\ 4 =/= 0 ) | 
						
							| 9 | 8 | a1i |  |-  ( M e. ZZ -> ( 4 e. CC /\ 4 =/= 0 ) ) | 
						
							| 10 |  | divdir |  |-  ( ( ( 2 x. M ) e. CC /\ 1 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) ) | 
						
							| 11 | 4 5 9 10 | syl3anc |  |-  ( M e. ZZ -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) ) | 
						
							| 12 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 13 | 12 | eqcomi |  |-  4 = ( 2 x. 2 ) | 
						
							| 14 | 13 | a1i |  |-  ( M e. ZZ -> 4 = ( 2 x. 2 ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( M e. ZZ -> ( ( 2 x. M ) / 4 ) = ( ( 2 x. M ) / ( 2 x. 2 ) ) ) | 
						
							| 16 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 17 | 16 | a1i |  |-  ( M e. ZZ -> 2 =/= 0 ) | 
						
							| 18 | 3 2 2 17 17 | divcan5d |  |-  ( M e. ZZ -> ( ( 2 x. M ) / ( 2 x. 2 ) ) = ( M / 2 ) ) | 
						
							| 19 | 15 18 | eqtrd |  |-  ( M e. ZZ -> ( ( 2 x. M ) / 4 ) = ( M / 2 ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( M e. ZZ -> ( ( ( 2 x. M ) / 4 ) + ( 1 / 4 ) ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) | 
						
							| 21 | 11 20 | eqtrd |  |-  ( M e. ZZ -> ( ( ( 2 x. M ) + 1 ) / 4 ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) | 
						
							| 22 | 1 21 | sylan9eqr |  |-  ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( N / 4 ) = ( ( M / 2 ) + ( 1 / 4 ) ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 24 |  | iftrue |  |-  ( 2 || M -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( M / 2 ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( M / 2 ) ) | 
						
							| 26 |  | 1re |  |-  1 e. RR | 
						
							| 27 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 28 |  | 4re |  |-  4 e. RR | 
						
							| 29 |  | 4pos |  |-  0 < 4 | 
						
							| 30 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 1 / 4 ) ) | 
						
							| 31 | 26 27 28 29 30 | mp4an |  |-  0 <_ ( 1 / 4 ) | 
						
							| 32 |  | 1lt4 |  |-  1 < 4 | 
						
							| 33 |  | recgt1 |  |-  ( ( 4 e. RR /\ 0 < 4 ) -> ( 1 < 4 <-> ( 1 / 4 ) < 1 ) ) | 
						
							| 34 | 28 29 33 | mp2an |  |-  ( 1 < 4 <-> ( 1 / 4 ) < 1 ) | 
						
							| 35 | 32 34 | mpbi |  |-  ( 1 / 4 ) < 1 | 
						
							| 36 | 31 35 | pm3.2i |  |-  ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) | 
						
							| 37 |  | evend2 |  |-  ( M e. ZZ -> ( 2 || M <-> ( M / 2 ) e. ZZ ) ) | 
						
							| 38 | 37 | biimpac |  |-  ( ( 2 || M /\ M e. ZZ ) -> ( M / 2 ) e. ZZ ) | 
						
							| 39 |  | 4nn |  |-  4 e. NN | 
						
							| 40 |  | nnrecre |  |-  ( 4 e. NN -> ( 1 / 4 ) e. RR ) | 
						
							| 41 | 39 40 | ax-mp |  |-  ( 1 / 4 ) e. RR | 
						
							| 42 |  | flbi2 |  |-  ( ( ( M / 2 ) e. ZZ /\ ( 1 / 4 ) e. RR ) -> ( ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) | 
						
							| 43 | 38 41 42 | sylancl |  |-  ( ( 2 || M /\ M e. ZZ ) -> ( ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) | 
						
							| 44 | 36 43 | mpbiri |  |-  ( ( 2 || M /\ M e. ZZ ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( M / 2 ) ) | 
						
							| 45 | 25 44 | eqtr4d |  |-  ( ( 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 46 |  | iffalse |  |-  ( -. 2 || M -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( ( M - 1 ) / 2 ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( -. 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( ( M - 1 ) / 2 ) ) | 
						
							| 48 |  | odd2np1 |  |-  ( M e. ZZ -> ( -. 2 || M <-> E. x e. ZZ ( ( 2 x. x ) + 1 ) = M ) ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 51 |  | divcan5 |  |-  ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) ) | 
						
							| 52 | 49 50 50 51 | mp3an |  |-  ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) | 
						
							| 53 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 54 | 53 12 | oveq12i |  |-  ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 2 / 4 ) | 
						
							| 55 | 52 54 | eqtr3i |  |-  ( 1 / 2 ) = ( 2 / 4 ) | 
						
							| 56 | 55 | oveq1i |  |-  ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) | 
						
							| 57 |  | 2cn |  |-  2 e. CC | 
						
							| 58 | 57 49 6 7 | divdiri |  |-  ( ( 2 + 1 ) / 4 ) = ( ( 2 / 4 ) + ( 1 / 4 ) ) | 
						
							| 59 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 60 | 59 | oveq1i |  |-  ( ( 2 + 1 ) / 4 ) = ( 3 / 4 ) | 
						
							| 61 | 56 58 60 | 3eqtr2i |  |-  ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) | 
						
							| 62 | 61 | a1i |  |-  ( x e. ZZ -> ( ( 1 / 2 ) + ( 1 / 4 ) ) = ( 3 / 4 ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( x e. ZZ -> ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) = ( x + ( 3 / 4 ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( x e. ZZ -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = ( |_ ` ( x + ( 3 / 4 ) ) ) ) | 
						
							| 65 |  | 3re |  |-  3 e. RR | 
						
							| 66 |  | 0re |  |-  0 e. RR | 
						
							| 67 |  | 3pos |  |-  0 < 3 | 
						
							| 68 | 66 65 67 | ltleii |  |-  0 <_ 3 | 
						
							| 69 |  | divge0 |  |-  ( ( ( 3 e. RR /\ 0 <_ 3 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 3 / 4 ) ) | 
						
							| 70 | 65 68 28 29 69 | mp4an |  |-  0 <_ ( 3 / 4 ) | 
						
							| 71 |  | 3lt4 |  |-  3 < 4 | 
						
							| 72 |  | nnrp |  |-  ( 4 e. NN -> 4 e. RR+ ) | 
						
							| 73 | 39 72 | ax-mp |  |-  4 e. RR+ | 
						
							| 74 |  | divlt1lt |  |-  ( ( 3 e. RR /\ 4 e. RR+ ) -> ( ( 3 / 4 ) < 1 <-> 3 < 4 ) ) | 
						
							| 75 | 65 73 74 | mp2an |  |-  ( ( 3 / 4 ) < 1 <-> 3 < 4 ) | 
						
							| 76 | 71 75 | mpbir |  |-  ( 3 / 4 ) < 1 | 
						
							| 77 | 70 76 | pm3.2i |  |-  ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) | 
						
							| 78 | 65 28 7 | redivcli |  |-  ( 3 / 4 ) e. RR | 
						
							| 79 |  | flbi2 |  |-  ( ( x e. ZZ /\ ( 3 / 4 ) e. RR ) -> ( ( |_ ` ( x + ( 3 / 4 ) ) ) = x <-> ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) ) ) | 
						
							| 80 | 78 79 | mpan2 |  |-  ( x e. ZZ -> ( ( |_ ` ( x + ( 3 / 4 ) ) ) = x <-> ( 0 <_ ( 3 / 4 ) /\ ( 3 / 4 ) < 1 ) ) ) | 
						
							| 81 | 77 80 | mpbiri |  |-  ( x e. ZZ -> ( |_ ` ( x + ( 3 / 4 ) ) ) = x ) | 
						
							| 82 | 64 81 | eqtrd |  |-  ( x e. ZZ -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = x ) | 
						
							| 83 | 82 | adantr |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) = x ) | 
						
							| 84 |  | oveq1 |  |-  ( M = ( ( 2 x. x ) + 1 ) -> ( M / 2 ) = ( ( ( 2 x. x ) + 1 ) / 2 ) ) | 
						
							| 85 | 84 | eqcoms |  |-  ( ( ( 2 x. x ) + 1 ) = M -> ( M / 2 ) = ( ( ( 2 x. x ) + 1 ) / 2 ) ) | 
						
							| 86 |  | 2z |  |-  2 e. ZZ | 
						
							| 87 | 86 | a1i |  |-  ( x e. ZZ -> 2 e. ZZ ) | 
						
							| 88 |  | id |  |-  ( x e. ZZ -> x e. ZZ ) | 
						
							| 89 | 87 88 | zmulcld |  |-  ( x e. ZZ -> ( 2 x. x ) e. ZZ ) | 
						
							| 90 | 89 | zcnd |  |-  ( x e. ZZ -> ( 2 x. x ) e. CC ) | 
						
							| 91 |  | 1cnd |  |-  ( x e. ZZ -> 1 e. CC ) | 
						
							| 92 | 50 | a1i |  |-  ( x e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 93 |  | divdir |  |-  ( ( ( 2 x. x ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 94 | 90 91 92 93 | syl3anc |  |-  ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 95 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 96 |  | 2cnd |  |-  ( x e. ZZ -> 2 e. CC ) | 
						
							| 97 | 16 | a1i |  |-  ( x e. ZZ -> 2 =/= 0 ) | 
						
							| 98 | 95 96 97 | divcan3d |  |-  ( x e. ZZ -> ( ( 2 x. x ) / 2 ) = x ) | 
						
							| 99 | 98 | oveq1d |  |-  ( x e. ZZ -> ( ( ( 2 x. x ) / 2 ) + ( 1 / 2 ) ) = ( x + ( 1 / 2 ) ) ) | 
						
							| 100 | 94 99 | eqtrd |  |-  ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) / 2 ) = ( x + ( 1 / 2 ) ) ) | 
						
							| 101 | 85 100 | sylan9eqr |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( M / 2 ) = ( x + ( 1 / 2 ) ) ) | 
						
							| 102 | 101 | oveq1d |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M / 2 ) + ( 1 / 4 ) ) = ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) ) | 
						
							| 103 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 104 | 103 | a1i |  |-  ( x e. ZZ -> ( 1 / 2 ) e. CC ) | 
						
							| 105 | 6 7 | reccli |  |-  ( 1 / 4 ) e. CC | 
						
							| 106 | 105 | a1i |  |-  ( x e. ZZ -> ( 1 / 4 ) e. CC ) | 
						
							| 107 | 95 104 106 | addassd |  |-  ( x e. ZZ -> ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( x + ( 1 / 2 ) ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 109 | 102 108 | eqtrd |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M / 2 ) + ( 1 / 4 ) ) = ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 110 | 109 | fveq2d |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = ( |_ ` ( x + ( ( 1 / 2 ) + ( 1 / 4 ) ) ) ) ) | 
						
							| 111 |  | oveq1 |  |-  ( M = ( ( 2 x. x ) + 1 ) -> ( M - 1 ) = ( ( ( 2 x. x ) + 1 ) - 1 ) ) | 
						
							| 112 | 111 | eqcoms |  |-  ( ( ( 2 x. x ) + 1 ) = M -> ( M - 1 ) = ( ( ( 2 x. x ) + 1 ) - 1 ) ) | 
						
							| 113 |  | pncan1 |  |-  ( ( 2 x. x ) e. CC -> ( ( ( 2 x. x ) + 1 ) - 1 ) = ( 2 x. x ) ) | 
						
							| 114 | 90 113 | syl |  |-  ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) - 1 ) = ( 2 x. x ) ) | 
						
							| 115 | 112 114 | sylan9eqr |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( M - 1 ) = ( 2 x. x ) ) | 
						
							| 116 | 115 | oveq1d |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = ( ( 2 x. x ) / 2 ) ) | 
						
							| 117 | 98 | adantr |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( 2 x. x ) / 2 ) = x ) | 
						
							| 118 | 116 117 | eqtrd |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = x ) | 
						
							| 119 | 83 110 118 | 3eqtr4rd |  |-  ( ( x e. ZZ /\ ( ( 2 x. x ) + 1 ) = M ) -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 120 | 119 | ex |  |-  ( x e. ZZ -> ( ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) | 
						
							| 121 | 120 | adantl |  |-  ( ( M e. ZZ /\ x e. ZZ ) -> ( ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) | 
						
							| 122 | 121 | rexlimdva |  |-  ( M e. ZZ -> ( E. x e. ZZ ( ( 2 x. x ) + 1 ) = M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) | 
						
							| 123 | 48 122 | sylbid |  |-  ( M e. ZZ -> ( -. 2 || M -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) ) | 
						
							| 124 | 123 | impcom |  |-  ( ( -. 2 || M /\ M e. ZZ ) -> ( ( M - 1 ) / 2 ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 125 | 47 124 | eqtrd |  |-  ( ( -. 2 || M /\ M e. ZZ ) -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 126 | 45 125 | pm2.61ian |  |-  ( M e. ZZ -> if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) = ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) ) | 
						
							| 127 | 126 | eqcomd |  |-  ( M e. ZZ -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( ( M / 2 ) + ( 1 / 4 ) ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) | 
						
							| 129 | 23 128 | eqtrd |  |-  ( ( M e. ZZ /\ N = ( ( 2 x. M ) + 1 ) ) -> ( |_ ` ( N / 4 ) ) = if ( 2 || M , ( M / 2 ) , ( ( M - 1 ) / 2 ) ) ) |