| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑁  =  ( ( 2  ·  𝑀 )  +  1 )  →  ( 𝑁  /  4 )  =  ( ( ( 2  ·  𝑀 )  +  1 )  /  4 ) ) | 
						
							| 2 |  | 2cnd | ⊢ ( 𝑀  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 3 |  | zcn | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ ) | 
						
							| 4 | 2 3 | mulcld | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  ·  𝑀 )  ∈  ℂ ) | 
						
							| 5 |  | 1cnd | ⊢ ( 𝑀  ∈  ℤ  →  1  ∈  ℂ ) | 
						
							| 6 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 7 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 8 | 6 7 | pm3.2i | ⊢ ( 4  ∈  ℂ  ∧  4  ≠  0 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  ( 4  ∈  ℂ  ∧  4  ≠  0 ) ) | 
						
							| 10 |  | divdir | ⊢ ( ( ( 2  ·  𝑀 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 4  ∈  ℂ  ∧  4  ≠  0 ) )  →  ( ( ( 2  ·  𝑀 )  +  1 )  /  4 )  =  ( ( ( 2  ·  𝑀 )  /  4 )  +  ( 1  /  4 ) ) ) | 
						
							| 11 | 4 5 9 10 | syl3anc | ⊢ ( 𝑀  ∈  ℤ  →  ( ( ( 2  ·  𝑀 )  +  1 )  /  4 )  =  ( ( ( 2  ·  𝑀 )  /  4 )  +  ( 1  /  4 ) ) ) | 
						
							| 12 |  | 2t2e4 | ⊢ ( 2  ·  2 )  =  4 | 
						
							| 13 | 12 | eqcomi | ⊢ 4  =  ( 2  ·  2 ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  4  =  ( 2  ·  2 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 2  ·  𝑀 )  /  4 )  =  ( ( 2  ·  𝑀 )  /  ( 2  ·  2 ) ) ) | 
						
							| 16 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑀  ∈  ℤ  →  2  ≠  0 ) | 
						
							| 18 | 3 2 2 17 17 | divcan5d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 2  ·  𝑀 )  /  ( 2  ·  2 ) )  =  ( 𝑀  /  2 ) ) | 
						
							| 19 | 15 18 | eqtrd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 2  ·  𝑀 )  /  4 )  =  ( 𝑀  /  2 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑀  ∈  ℤ  →  ( ( ( 2  ·  𝑀 )  /  4 )  +  ( 1  /  4 ) )  =  ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) | 
						
							| 21 | 11 20 | eqtrd | ⊢ ( 𝑀  ∈  ℤ  →  ( ( ( 2  ·  𝑀 )  +  1 )  /  4 )  =  ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) | 
						
							| 22 | 1 21 | sylan9eqr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) )  →  ( 𝑁  /  4 )  =  ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) )  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 24 |  | iftrue | ⊢ ( 2  ∥  𝑀  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( 𝑀  /  2 ) ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( 𝑀  /  2 ) ) | 
						
							| 26 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 27 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 28 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 29 |  | 4pos | ⊢ 0  <  4 | 
						
							| 30 |  | divge0 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( 4  ∈  ℝ  ∧  0  <  4 ) )  →  0  ≤  ( 1  /  4 ) ) | 
						
							| 31 | 26 27 28 29 30 | mp4an | ⊢ 0  ≤  ( 1  /  4 ) | 
						
							| 32 |  | 1lt4 | ⊢ 1  <  4 | 
						
							| 33 |  | recgt1 | ⊢ ( ( 4  ∈  ℝ  ∧  0  <  4 )  →  ( 1  <  4  ↔  ( 1  /  4 )  <  1 ) ) | 
						
							| 34 | 28 29 33 | mp2an | ⊢ ( 1  <  4  ↔  ( 1  /  4 )  <  1 ) | 
						
							| 35 | 32 34 | mpbi | ⊢ ( 1  /  4 )  <  1 | 
						
							| 36 | 31 35 | pm3.2i | ⊢ ( 0  ≤  ( 1  /  4 )  ∧  ( 1  /  4 )  <  1 ) | 
						
							| 37 |  | evend2 | ⊢ ( 𝑀  ∈  ℤ  →  ( 2  ∥  𝑀  ↔  ( 𝑀  /  2 )  ∈  ℤ ) ) | 
						
							| 38 | 37 | biimpac | ⊢ ( ( 2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  /  2 )  ∈  ℤ ) | 
						
							| 39 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 40 |  | nnrecre | ⊢ ( 4  ∈  ℕ  →  ( 1  /  4 )  ∈  ℝ ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ ( 1  /  4 )  ∈  ℝ | 
						
							| 42 |  | flbi2 | ⊢ ( ( ( 𝑀  /  2 )  ∈  ℤ  ∧  ( 1  /  4 )  ∈  ℝ )  →  ( ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  ( 𝑀  /  2 )  ↔  ( 0  ≤  ( 1  /  4 )  ∧  ( 1  /  4 )  <  1 ) ) ) | 
						
							| 43 | 38 41 42 | sylancl | ⊢ ( ( 2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  ( 𝑀  /  2 )  ↔  ( 0  ≤  ( 1  /  4 )  ∧  ( 1  /  4 )  <  1 ) ) ) | 
						
							| 44 | 36 43 | mpbiri | ⊢ ( ( 2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  ( 𝑀  /  2 ) ) | 
						
							| 45 | 25 44 | eqtr4d | ⊢ ( ( 2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 46 |  | iffalse | ⊢ ( ¬  2  ∥  𝑀  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( ( 𝑀  −  1 )  /  2 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ¬  2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( ( 𝑀  −  1 )  /  2 ) ) | 
						
							| 48 |  | odd2np1 | ⊢ ( 𝑀  ∈  ℤ  →  ( ¬  2  ∥  𝑀  ↔  ∃ 𝑥  ∈  ℤ ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 ) ) | 
						
							| 49 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 50 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 51 |  | divcan5 | ⊢ ( ( 1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( 2  ·  1 )  /  ( 2  ·  2 ) )  =  ( 1  /  2 ) ) | 
						
							| 52 | 49 50 50 51 | mp3an | ⊢ ( ( 2  ·  1 )  /  ( 2  ·  2 ) )  =  ( 1  /  2 ) | 
						
							| 53 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 54 | 53 12 | oveq12i | ⊢ ( ( 2  ·  1 )  /  ( 2  ·  2 ) )  =  ( 2  /  4 ) | 
						
							| 55 | 52 54 | eqtr3i | ⊢ ( 1  /  2 )  =  ( 2  /  4 ) | 
						
							| 56 | 55 | oveq1i | ⊢ ( ( 1  /  2 )  +  ( 1  /  4 ) )  =  ( ( 2  /  4 )  +  ( 1  /  4 ) ) | 
						
							| 57 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 58 | 57 49 6 7 | divdiri | ⊢ ( ( 2  +  1 )  /  4 )  =  ( ( 2  /  4 )  +  ( 1  /  4 ) ) | 
						
							| 59 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 60 | 59 | oveq1i | ⊢ ( ( 2  +  1 )  /  4 )  =  ( 3  /  4 ) | 
						
							| 61 | 56 58 60 | 3eqtr2i | ⊢ ( ( 1  /  2 )  +  ( 1  /  4 ) )  =  ( 3  /  4 ) | 
						
							| 62 | 61 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 1  /  2 )  +  ( 1  /  4 ) )  =  ( 3  /  4 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) )  =  ( 𝑥  +  ( 3  /  4 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( 𝑥  ∈  ℤ  →  ( ⌊ ‘ ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) )  =  ( ⌊ ‘ ( 𝑥  +  ( 3  /  4 ) ) ) ) | 
						
							| 65 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 66 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 67 |  | 3pos | ⊢ 0  <  3 | 
						
							| 68 | 66 65 67 | ltleii | ⊢ 0  ≤  3 | 
						
							| 69 |  | divge0 | ⊢ ( ( ( 3  ∈  ℝ  ∧  0  ≤  3 )  ∧  ( 4  ∈  ℝ  ∧  0  <  4 ) )  →  0  ≤  ( 3  /  4 ) ) | 
						
							| 70 | 65 68 28 29 69 | mp4an | ⊢ 0  ≤  ( 3  /  4 ) | 
						
							| 71 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 72 |  | nnrp | ⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ ) | 
						
							| 73 | 39 72 | ax-mp | ⊢ 4  ∈  ℝ+ | 
						
							| 74 |  | divlt1lt | ⊢ ( ( 3  ∈  ℝ  ∧  4  ∈  ℝ+ )  →  ( ( 3  /  4 )  <  1  ↔  3  <  4 ) ) | 
						
							| 75 | 65 73 74 | mp2an | ⊢ ( ( 3  /  4 )  <  1  ↔  3  <  4 ) | 
						
							| 76 | 71 75 | mpbir | ⊢ ( 3  /  4 )  <  1 | 
						
							| 77 | 70 76 | pm3.2i | ⊢ ( 0  ≤  ( 3  /  4 )  ∧  ( 3  /  4 )  <  1 ) | 
						
							| 78 | 65 28 7 | redivcli | ⊢ ( 3  /  4 )  ∈  ℝ | 
						
							| 79 |  | flbi2 | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( 3  /  4 )  ∈  ℝ )  →  ( ( ⌊ ‘ ( 𝑥  +  ( 3  /  4 ) ) )  =  𝑥  ↔  ( 0  ≤  ( 3  /  4 )  ∧  ( 3  /  4 )  <  1 ) ) ) | 
						
							| 80 | 78 79 | mpan2 | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ⌊ ‘ ( 𝑥  +  ( 3  /  4 ) ) )  =  𝑥  ↔  ( 0  ≤  ( 3  /  4 )  ∧  ( 3  /  4 )  <  1 ) ) ) | 
						
							| 81 | 77 80 | mpbiri | ⊢ ( 𝑥  ∈  ℤ  →  ( ⌊ ‘ ( 𝑥  +  ( 3  /  4 ) ) )  =  𝑥 ) | 
						
							| 82 | 64 81 | eqtrd | ⊢ ( 𝑥  ∈  ℤ  →  ( ⌊ ‘ ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) )  =  𝑥 ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ⌊ ‘ ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) )  =  𝑥 ) | 
						
							| 84 |  | oveq1 | ⊢ ( 𝑀  =  ( ( 2  ·  𝑥 )  +  1 )  →  ( 𝑀  /  2 )  =  ( ( ( 2  ·  𝑥 )  +  1 )  /  2 ) ) | 
						
							| 85 | 84 | eqcoms | ⊢ ( ( ( 2  ·  𝑥 )  +  1 )  =  𝑀  →  ( 𝑀  /  2 )  =  ( ( ( 2  ·  𝑥 )  +  1 )  /  2 ) ) | 
						
							| 86 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 87 | 86 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  2  ∈  ℤ ) | 
						
							| 88 |  | id | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℤ ) | 
						
							| 89 | 87 88 | zmulcld | ⊢ ( 𝑥  ∈  ℤ  →  ( 2  ·  𝑥 )  ∈  ℤ ) | 
						
							| 90 | 89 | zcnd | ⊢ ( 𝑥  ∈  ℤ  →  ( 2  ·  𝑥 )  ∈  ℂ ) | 
						
							| 91 |  | 1cnd | ⊢ ( 𝑥  ∈  ℤ  →  1  ∈  ℂ ) | 
						
							| 92 | 50 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 93 |  | divdir | ⊢ ( ( ( 2  ·  𝑥 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 2  ·  𝑥 )  +  1 )  /  2 )  =  ( ( ( 2  ·  𝑥 )  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 94 | 90 91 92 93 | syl3anc | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 2  ·  𝑥 )  +  1 )  /  2 )  =  ( ( ( 2  ·  𝑥 )  /  2 )  +  ( 1  /  2 ) ) ) | 
						
							| 95 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 96 |  | 2cnd | ⊢ ( 𝑥  ∈  ℤ  →  2  ∈  ℂ ) | 
						
							| 97 | 16 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  2  ≠  0 ) | 
						
							| 98 | 95 96 97 | divcan3d | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 2  ·  𝑥 )  /  2 )  =  𝑥 ) | 
						
							| 99 | 98 | oveq1d | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 2  ·  𝑥 )  /  2 )  +  ( 1  /  2 ) )  =  ( 𝑥  +  ( 1  /  2 ) ) ) | 
						
							| 100 | 94 99 | eqtrd | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 2  ·  𝑥 )  +  1 )  /  2 )  =  ( 𝑥  +  ( 1  /  2 ) ) ) | 
						
							| 101 | 85 100 | sylan9eqr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( 𝑀  /  2 )  =  ( 𝑥  +  ( 1  /  2 ) ) ) | 
						
							| 102 | 101 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑀  /  2 )  +  ( 1  /  4 ) )  =  ( ( 𝑥  +  ( 1  /  2 ) )  +  ( 1  /  4 ) ) ) | 
						
							| 103 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 104 | 103 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 105 | 6 7 | reccli | ⊢ ( 1  /  4 )  ∈  ℂ | 
						
							| 106 | 105 | a1i | ⊢ ( 𝑥  ∈  ℤ  →  ( 1  /  4 )  ∈  ℂ ) | 
						
							| 107 | 95 104 106 | addassd | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 𝑥  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑥  +  ( 1  /  2 ) )  +  ( 1  /  4 ) )  =  ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 109 | 102 108 | eqtrd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑀  /  2 )  +  ( 1  /  4 ) )  =  ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 110 | 109 | fveq2d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  ( ⌊ ‘ ( 𝑥  +  ( ( 1  /  2 )  +  ( 1  /  4 ) ) ) ) ) | 
						
							| 111 |  | oveq1 | ⊢ ( 𝑀  =  ( ( 2  ·  𝑥 )  +  1 )  →  ( 𝑀  −  1 )  =  ( ( ( 2  ·  𝑥 )  +  1 )  −  1 ) ) | 
						
							| 112 | 111 | eqcoms | ⊢ ( ( ( 2  ·  𝑥 )  +  1 )  =  𝑀  →  ( 𝑀  −  1 )  =  ( ( ( 2  ·  𝑥 )  +  1 )  −  1 ) ) | 
						
							| 113 |  | pncan1 | ⊢ ( ( 2  ·  𝑥 )  ∈  ℂ  →  ( ( ( 2  ·  𝑥 )  +  1 )  −  1 )  =  ( 2  ·  𝑥 ) ) | 
						
							| 114 | 90 113 | syl | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 2  ·  𝑥 )  +  1 )  −  1 )  =  ( 2  ·  𝑥 ) ) | 
						
							| 115 | 112 114 | sylan9eqr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( 𝑀  −  1 )  =  ( 2  ·  𝑥 ) ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ( 2  ·  𝑥 )  /  2 ) ) | 
						
							| 117 | 98 | adantr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 2  ·  𝑥 )  /  2 )  =  𝑥 ) | 
						
							| 118 | 116 117 | eqtrd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑀  −  1 )  /  2 )  =  𝑥 ) | 
						
							| 119 | 83 110 118 | 3eqtr4rd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  ( ( 2  ·  𝑥 )  +  1 )  =  𝑀 )  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 120 | 119 | ex | ⊢ ( 𝑥  ∈  ℤ  →  ( ( ( 2  ·  𝑥 )  +  1 )  =  𝑀  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑥  ∈  ℤ )  →  ( ( ( 2  ·  𝑥 )  +  1 )  =  𝑀  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) ) | 
						
							| 122 | 121 | rexlimdva | ⊢ ( 𝑀  ∈  ℤ  →  ( ∃ 𝑥  ∈  ℤ ( ( 2  ·  𝑥 )  +  1 )  =  𝑀  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) ) | 
						
							| 123 | 48 122 | sylbid | ⊢ ( 𝑀  ∈  ℤ  →  ( ¬  2  ∥  𝑀  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) ) | 
						
							| 124 | 123 | impcom | ⊢ ( ( ¬  2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  ( ( 𝑀  −  1 )  /  2 )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 125 | 47 124 | eqtrd | ⊢ ( ( ¬  2  ∥  𝑀  ∧  𝑀  ∈  ℤ )  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 126 | 45 125 | pm2.61ian | ⊢ ( 𝑀  ∈  ℤ  →  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) )  =  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) ) ) | 
						
							| 127 | 126 | eqcomd | ⊢ ( 𝑀  ∈  ℤ  →  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) )  →  ( ⌊ ‘ ( ( 𝑀  /  2 )  +  ( 1  /  4 ) ) )  =  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) ) ) | 
						
							| 129 | 23 128 | eqtrd | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) )  →  ( ⌊ ‘ ( 𝑁  /  4 ) )  =  if ( 2  ∥  𝑀 ,  ( 𝑀  /  2 ) ,  ( ( 𝑀  −  1 )  /  2 ) ) ) |