Metamath Proof Explorer


Theorem flodddiv4

Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021)

Ref Expression
Assertion flodddiv4 MN=2 M+1N4=if2MM2M12

Proof

Step Hyp Ref Expression
1 oveq1 N=2 M+1N4=2 M+14
2 2cnd M2
3 zcn MM
4 2 3 mulcld M2 M
5 1cnd M1
6 4cn 4
7 4ne0 40
8 6 7 pm3.2i 440
9 8 a1i M440
10 divdir 2 M14402 M+14=2 M4+14
11 4 5 9 10 syl3anc M2 M+14=2 M4+14
12 2t2e4 22=4
13 12 eqcomi 4=22
14 13 a1i M4=22
15 14 oveq2d M2 M4=2 M22
16 2ne0 20
17 16 a1i M20
18 3 2 2 17 17 divcan5d M2 M22=M2
19 15 18 eqtrd M2 M4=M2
20 19 oveq1d M2 M4+14=M2+14
21 11 20 eqtrd M2 M+14=M2+14
22 1 21 sylan9eqr MN=2 M+1N4=M2+14
23 22 fveq2d MN=2 M+1N4=M2+14
24 iftrue 2Mif2MM2M12=M2
25 24 adantr 2MMif2MM2M12=M2
26 1re 1
27 0le1 01
28 4re 4
29 4pos 0<4
30 divge0 10140<4014
31 26 27 28 29 30 mp4an 014
32 1lt4 1<4
33 recgt1 40<41<414<1
34 28 29 33 mp2an 1<414<1
35 32 34 mpbi 14<1
36 31 35 pm3.2i 01414<1
37 evend2 M2MM2
38 37 biimpac 2MMM2
39 4nn 4
40 nnrecre 414
41 39 40 ax-mp 14
42 flbi2 M214M2+14=M201414<1
43 38 41 42 sylancl 2MMM2+14=M201414<1
44 36 43 mpbiri 2MMM2+14=M2
45 25 44 eqtr4d 2MMif2MM2M12=M2+14
46 iffalse ¬2Mif2MM2M12=M12
47 46 adantr ¬2MMif2MM2M12=M12
48 odd2np1 M¬2Mx2x+1=M
49 ax-1cn 1
50 2cnne0 220
51 divcan5 12202202122=12
52 49 50 50 51 mp3an 2122=12
53 2t1e2 21=2
54 53 12 oveq12i 2122=24
55 52 54 eqtr3i 12=24
56 55 oveq1i 12+14=24+14
57 2cn 2
58 57 49 6 7 divdiri 2+14=24+14
59 2p1e3 2+1=3
60 59 oveq1i 2+14=34
61 56 58 60 3eqtr2i 12+14=34
62 61 a1i x12+14=34
63 62 oveq2d xx+12+14=x+34
64 63 fveq2d xx+12+14=x+34
65 3re 3
66 0re 0
67 3pos 0<3
68 66 65 67 ltleii 03
69 divge0 30340<4034
70 65 68 28 29 69 mp4an 034
71 3lt4 3<4
72 nnrp 44+
73 39 72 ax-mp 4+
74 divlt1lt 34+34<13<4
75 65 73 74 mp2an 34<13<4
76 71 75 mpbir 34<1
77 70 76 pm3.2i 03434<1
78 65 28 7 redivcli 34
79 flbi2 x34x+34=x03434<1
80 78 79 mpan2 xx+34=x03434<1
81 77 80 mpbiri xx+34=x
82 64 81 eqtrd xx+12+14=x
83 82 adantr x2x+1=Mx+12+14=x
84 oveq1 M=2x+1M2=2x+12
85 84 eqcoms 2x+1=MM2=2x+12
86 2z 2
87 86 a1i x2
88 id xx
89 87 88 zmulcld x2x
90 89 zcnd x2x
91 1cnd x1
92 50 a1i x220
93 divdir 2x12202x+12=2x2+12
94 90 91 92 93 syl3anc x2x+12=2x2+12
95 zcn xx
96 2cnd x2
97 16 a1i x20
98 95 96 97 divcan3d x2x2=x
99 98 oveq1d x2x2+12=x+12
100 94 99 eqtrd x2x+12=x+12
101 85 100 sylan9eqr x2x+1=MM2=x+12
102 101 oveq1d x2x+1=MM2+14=x+12+14
103 halfcn 12
104 103 a1i x12
105 6 7 reccli 14
106 105 a1i x14
107 95 104 106 addassd xx+12+14=x+12+14
108 107 adantr x2x+1=Mx+12+14=x+12+14
109 102 108 eqtrd x2x+1=MM2+14=x+12+14
110 109 fveq2d x2x+1=MM2+14=x+12+14
111 oveq1 M=2x+1M1=2x+1-1
112 111 eqcoms 2x+1=MM1=2x+1-1
113 pncan1 2x2x+1-1=2x
114 90 113 syl x2x+1-1=2x
115 112 114 sylan9eqr x2x+1=MM1=2x
116 115 oveq1d x2x+1=MM12=2x2
117 98 adantr x2x+1=M2x2=x
118 116 117 eqtrd x2x+1=MM12=x
119 83 110 118 3eqtr4rd x2x+1=MM12=M2+14
120 119 ex x2x+1=MM12=M2+14
121 120 adantl Mx2x+1=MM12=M2+14
122 121 rexlimdva Mx2x+1=MM12=M2+14
123 48 122 sylbid M¬2MM12=M2+14
124 123 impcom ¬2MMM12=M2+14
125 47 124 eqtrd ¬2MMif2MM2M12=M2+14
126 45 125 pm2.61ian Mif2MM2M12=M2+14
127 126 eqcomd MM2+14=if2MM2M12
128 127 adantr MN=2 M+1M2+14=if2MM2M12
129 23 128 eqtrd MN=2 M+1N4=if2MM2M12