Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
The division algorithm
flodddiv4
Next ⟩
fldivndvdslt
Metamath Proof Explorer
Ascii
Unicode
Theorem
flodddiv4
Description:
The floor of an odd integer divided by 4.
(Contributed by
AV
, 17-Jun-2021)
Ref
Expression
Assertion
flodddiv4
⊢
M
∈
ℤ
∧
N
=
2
⋅
M
+
1
→
N
4
=
if
2
∥
M
M
2
M
−
1
2
Proof
Step
Hyp
Ref
Expression
1
oveq1
⊢
N
=
2
⋅
M
+
1
→
N
4
=
2
⋅
M
+
1
4
2
2cnd
⊢
M
∈
ℤ
→
2
∈
ℂ
3
zcn
⊢
M
∈
ℤ
→
M
∈
ℂ
4
2
3
mulcld
⊢
M
∈
ℤ
→
2
⋅
M
∈
ℂ
5
1cnd
⊢
M
∈
ℤ
→
1
∈
ℂ
6
4cn
⊢
4
∈
ℂ
7
4ne0
⊢
4
≠
0
8
6
7
pm3.2i
⊢
4
∈
ℂ
∧
4
≠
0
9
8
a1i
⊢
M
∈
ℤ
→
4
∈
ℂ
∧
4
≠
0
10
divdir
⊢
2
⋅
M
∈
ℂ
∧
1
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
2
⋅
M
+
1
4
=
2
⋅
M
4
+
1
4
11
4
5
9
10
syl3anc
⊢
M
∈
ℤ
→
2
⋅
M
+
1
4
=
2
⋅
M
4
+
1
4
12
2t2e4
⊢
2
⋅
2
=
4
13
12
eqcomi
⊢
4
=
2
⋅
2
14
13
a1i
⊢
M
∈
ℤ
→
4
=
2
⋅
2
15
14
oveq2d
⊢
M
∈
ℤ
→
2
⋅
M
4
=
2
⋅
M
2
⋅
2
16
2ne0
⊢
2
≠
0
17
16
a1i
⊢
M
∈
ℤ
→
2
≠
0
18
3
2
2
17
17
divcan5d
⊢
M
∈
ℤ
→
2
⋅
M
2
⋅
2
=
M
2
19
15
18
eqtrd
⊢
M
∈
ℤ
→
2
⋅
M
4
=
M
2
20
19
oveq1d
⊢
M
∈
ℤ
→
2
⋅
M
4
+
1
4
=
M
2
+
1
4
21
11
20
eqtrd
⊢
M
∈
ℤ
→
2
⋅
M
+
1
4
=
M
2
+
1
4
22
1
21
sylan9eqr
⊢
M
∈
ℤ
∧
N
=
2
⋅
M
+
1
→
N
4
=
M
2
+
1
4
23
22
fveq2d
⊢
M
∈
ℤ
∧
N
=
2
⋅
M
+
1
→
N
4
=
M
2
+
1
4
24
iftrue
⊢
2
∥
M
→
if
2
∥
M
M
2
M
−
1
2
=
M
2
25
24
adantr
⊢
2
∥
M
∧
M
∈
ℤ
→
if
2
∥
M
M
2
M
−
1
2
=
M
2
26
1re
⊢
1
∈
ℝ
27
0le1
⊢
0
≤
1
28
4re
⊢
4
∈
ℝ
29
4pos
⊢
0
<
4
30
divge0
⊢
1
∈
ℝ
∧
0
≤
1
∧
4
∈
ℝ
∧
0
<
4
→
0
≤
1
4
31
26
27
28
29
30
mp4an
⊢
0
≤
1
4
32
1lt4
⊢
1
<
4
33
recgt1
⊢
4
∈
ℝ
∧
0
<
4
→
1
<
4
↔
1
4
<
1
34
28
29
33
mp2an
⊢
1
<
4
↔
1
4
<
1
35
32
34
mpbi
⊢
1
4
<
1
36
31
35
pm3.2i
⊢
0
≤
1
4
∧
1
4
<
1
37
evend2
⊢
M
∈
ℤ
→
2
∥
M
↔
M
2
∈
ℤ
38
37
biimpac
⊢
2
∥
M
∧
M
∈
ℤ
→
M
2
∈
ℤ
39
4nn
⊢
4
∈
ℕ
40
nnrecre
⊢
4
∈
ℕ
→
1
4
∈
ℝ
41
39
40
ax-mp
⊢
1
4
∈
ℝ
42
flbi2
⊢
M
2
∈
ℤ
∧
1
4
∈
ℝ
→
M
2
+
1
4
=
M
2
↔
0
≤
1
4
∧
1
4
<
1
43
38
41
42
sylancl
⊢
2
∥
M
∧
M
∈
ℤ
→
M
2
+
1
4
=
M
2
↔
0
≤
1
4
∧
1
4
<
1
44
36
43
mpbiri
⊢
2
∥
M
∧
M
∈
ℤ
→
M
2
+
1
4
=
M
2
45
25
44
eqtr4d
⊢
2
∥
M
∧
M
∈
ℤ
→
if
2
∥
M
M
2
M
−
1
2
=
M
2
+
1
4
46
iffalse
⊢
¬
2
∥
M
→
if
2
∥
M
M
2
M
−
1
2
=
M
−
1
2
47
46
adantr
⊢
¬
2
∥
M
∧
M
∈
ℤ
→
if
2
∥
M
M
2
M
−
1
2
=
M
−
1
2
48
odd2np1
⊢
M
∈
ℤ
→
¬
2
∥
M
↔
∃
x
∈
ℤ
2
x
+
1
=
M
49
ax-1cn
⊢
1
∈
ℂ
50
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
51
divcan5
⊢
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
∈
ℂ
∧
2
≠
0
→
2
⋅
1
2
⋅
2
=
1
2
52
49
50
50
51
mp3an
⊢
2
⋅
1
2
⋅
2
=
1
2
53
2t1e2
⊢
2
⋅
1
=
2
54
53
12
oveq12i
⊢
2
⋅
1
2
⋅
2
=
2
4
55
52
54
eqtr3i
⊢
1
2
=
2
4
56
55
oveq1i
⊢
1
2
+
1
4
=
2
4
+
1
4
57
2cn
⊢
2
∈
ℂ
58
57
49
6
7
divdiri
⊢
2
+
1
4
=
2
4
+
1
4
59
2p1e3
⊢
2
+
1
=
3
60
59
oveq1i
⊢
2
+
1
4
=
3
4
61
56
58
60
3eqtr2i
⊢
1
2
+
1
4
=
3
4
62
61
a1i
⊢
x
∈
ℤ
→
1
2
+
1
4
=
3
4
63
62
oveq2d
⊢
x
∈
ℤ
→
x
+
1
2
+
1
4
=
x
+
3
4
64
63
fveq2d
⊢
x
∈
ℤ
→
x
+
1
2
+
1
4
=
x
+
3
4
65
3re
⊢
3
∈
ℝ
66
0re
⊢
0
∈
ℝ
67
3pos
⊢
0
<
3
68
66
65
67
ltleii
⊢
0
≤
3
69
divge0
⊢
3
∈
ℝ
∧
0
≤
3
∧
4
∈
ℝ
∧
0
<
4
→
0
≤
3
4
70
65
68
28
29
69
mp4an
⊢
0
≤
3
4
71
3lt4
⊢
3
<
4
72
nnrp
⊢
4
∈
ℕ
→
4
∈
ℝ
+
73
39
72
ax-mp
⊢
4
∈
ℝ
+
74
divlt1lt
⊢
3
∈
ℝ
∧
4
∈
ℝ
+
→
3
4
<
1
↔
3
<
4
75
65
73
74
mp2an
⊢
3
4
<
1
↔
3
<
4
76
71
75
mpbir
⊢
3
4
<
1
77
70
76
pm3.2i
⊢
0
≤
3
4
∧
3
4
<
1
78
65
28
7
redivcli
⊢
3
4
∈
ℝ
79
flbi2
⊢
x
∈
ℤ
∧
3
4
∈
ℝ
→
x
+
3
4
=
x
↔
0
≤
3
4
∧
3
4
<
1
80
78
79
mpan2
⊢
x
∈
ℤ
→
x
+
3
4
=
x
↔
0
≤
3
4
∧
3
4
<
1
81
77
80
mpbiri
⊢
x
∈
ℤ
→
x
+
3
4
=
x
82
64
81
eqtrd
⊢
x
∈
ℤ
→
x
+
1
2
+
1
4
=
x
83
82
adantr
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
x
+
1
2
+
1
4
=
x
84
oveq1
⊢
M
=
2
x
+
1
→
M
2
=
2
x
+
1
2
85
84
eqcoms
⊢
2
x
+
1
=
M
→
M
2
=
2
x
+
1
2
86
2z
⊢
2
∈
ℤ
87
86
a1i
⊢
x
∈
ℤ
→
2
∈
ℤ
88
id
⊢
x
∈
ℤ
→
x
∈
ℤ
89
87
88
zmulcld
⊢
x
∈
ℤ
→
2
x
∈
ℤ
90
89
zcnd
⊢
x
∈
ℤ
→
2
x
∈
ℂ
91
1cnd
⊢
x
∈
ℤ
→
1
∈
ℂ
92
50
a1i
⊢
x
∈
ℤ
→
2
∈
ℂ
∧
2
≠
0
93
divdir
⊢
2
x
∈
ℂ
∧
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
x
+
1
2
=
2
x
2
+
1
2
94
90
91
92
93
syl3anc
⊢
x
∈
ℤ
→
2
x
+
1
2
=
2
x
2
+
1
2
95
zcn
⊢
x
∈
ℤ
→
x
∈
ℂ
96
2cnd
⊢
x
∈
ℤ
→
2
∈
ℂ
97
16
a1i
⊢
x
∈
ℤ
→
2
≠
0
98
95
96
97
divcan3d
⊢
x
∈
ℤ
→
2
x
2
=
x
99
98
oveq1d
⊢
x
∈
ℤ
→
2
x
2
+
1
2
=
x
+
1
2
100
94
99
eqtrd
⊢
x
∈
ℤ
→
2
x
+
1
2
=
x
+
1
2
101
85
100
sylan9eqr
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
2
=
x
+
1
2
102
101
oveq1d
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
2
+
1
4
=
x
+
1
2
+
1
4
103
halfcn
⊢
1
2
∈
ℂ
104
103
a1i
⊢
x
∈
ℤ
→
1
2
∈
ℂ
105
6
7
reccli
⊢
1
4
∈
ℂ
106
105
a1i
⊢
x
∈
ℤ
→
1
4
∈
ℂ
107
95
104
106
addassd
⊢
x
∈
ℤ
→
x
+
1
2
+
1
4
=
x
+
1
2
+
1
4
108
107
adantr
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
x
+
1
2
+
1
4
=
x
+
1
2
+
1
4
109
102
108
eqtrd
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
2
+
1
4
=
x
+
1
2
+
1
4
110
109
fveq2d
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
2
+
1
4
=
x
+
1
2
+
1
4
111
oveq1
⊢
M
=
2
x
+
1
→
M
−
1
=
2
x
+
1
-
1
112
111
eqcoms
⊢
2
x
+
1
=
M
→
M
−
1
=
2
x
+
1
-
1
113
pncan1
⊢
2
x
∈
ℂ
→
2
x
+
1
-
1
=
2
x
114
90
113
syl
⊢
x
∈
ℤ
→
2
x
+
1
-
1
=
2
x
115
112
114
sylan9eqr
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
−
1
=
2
x
116
115
oveq1d
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
−
1
2
=
2
x
2
117
98
adantr
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
2
x
2
=
x
118
116
117
eqtrd
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
−
1
2
=
x
119
83
110
118
3eqtr4rd
⊢
x
∈
ℤ
∧
2
x
+
1
=
M
→
M
−
1
2
=
M
2
+
1
4
120
119
ex
⊢
x
∈
ℤ
→
2
x
+
1
=
M
→
M
−
1
2
=
M
2
+
1
4
121
120
adantl
⊢
M
∈
ℤ
∧
x
∈
ℤ
→
2
x
+
1
=
M
→
M
−
1
2
=
M
2
+
1
4
122
121
rexlimdva
⊢
M
∈
ℤ
→
∃
x
∈
ℤ
2
x
+
1
=
M
→
M
−
1
2
=
M
2
+
1
4
123
48
122
sylbid
⊢
M
∈
ℤ
→
¬
2
∥
M
→
M
−
1
2
=
M
2
+
1
4
124
123
impcom
⊢
¬
2
∥
M
∧
M
∈
ℤ
→
M
−
1
2
=
M
2
+
1
4
125
47
124
eqtrd
⊢
¬
2
∥
M
∧
M
∈
ℤ
→
if
2
∥
M
M
2
M
−
1
2
=
M
2
+
1
4
126
45
125
pm2.61ian
⊢
M
∈
ℤ
→
if
2
∥
M
M
2
M
−
1
2
=
M
2
+
1
4
127
126
eqcomd
⊢
M
∈
ℤ
→
M
2
+
1
4
=
if
2
∥
M
M
2
M
−
1
2
128
127
adantr
⊢
M
∈
ℤ
∧
N
=
2
⋅
M
+
1
→
M
2
+
1
4
=
if
2
∥
M
M
2
M
−
1
2
129
23
128
eqtrd
⊢
M
∈
ℤ
∧
N
=
2
⋅
M
+
1
→
N
4
=
if
2
∥
M
M
2
M
−
1
2