Metamath Proof Explorer


Theorem 5p4e9

Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 5p4e9 ( 5 + 4 ) = 9

Proof

Step Hyp Ref Expression
1 df-4 4 = ( 3 + 1 )
2 1 oveq2i ( 5 + 4 ) = ( 5 + ( 3 + 1 ) )
3 5cn 5 ∈ ℂ
4 3cn 3 ∈ ℂ
5 ax-1cn 1 ∈ ℂ
6 3 4 5 addassi ( ( 5 + 3 ) + 1 ) = ( 5 + ( 3 + 1 ) )
7 2 6 eqtr4i ( 5 + 4 ) = ( ( 5 + 3 ) + 1 )
8 df-9 9 = ( 8 + 1 )
9 5p3e8 ( 5 + 3 ) = 8
10 9 oveq1i ( ( 5 + 3 ) + 1 ) = ( 8 + 1 )
11 8 10 eqtr4i 9 = ( ( 5 + 3 ) + 1 )
12 7 11 eqtr4i ( 5 + 4 ) = 9