Metamath Proof Explorer


Theorem 5recm6rec

Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Assertion 5recm6rec ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( 1 / 3 0 )

Proof

Step Hyp Ref Expression
1 5cn 5 ∈ ℂ
2 6cn 6 ∈ ℂ
3 5re 5 ∈ ℝ
4 5pos 0 < 5
5 3 4 gt0ne0ii 5 ≠ 0
6 6re 6 ∈ ℝ
7 6pos 0 < 6
8 6 7 gt0ne0ii 6 ≠ 0
9 1 2 5 8 subreci ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( ( 6 − 5 ) / ( 5 · 6 ) )
10 ax-1cn 1 ∈ ℂ
11 5p1e6 ( 5 + 1 ) = 6
12 2 1 10 11 subaddrii ( 6 − 5 ) = 1
13 6t5e30 ( 6 · 5 ) = 3 0
14 2 1 13 mulcomli ( 5 · 6 ) = 3 0
15 12 14 oveq12i ( ( 6 − 5 ) / ( 5 · 6 ) ) = ( 1 / 3 0 )
16 9 15 eqtri ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( 1 / 3 0 )