Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | 5recm6rec | ⊢ ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( 1 / ; 3 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5cn | ⊢ 5 ∈ ℂ | |
2 | 6cn | ⊢ 6 ∈ ℂ | |
3 | 5re | ⊢ 5 ∈ ℝ | |
4 | 5pos | ⊢ 0 < 5 | |
5 | 3 4 | gt0ne0ii | ⊢ 5 ≠ 0 |
6 | 6re | ⊢ 6 ∈ ℝ | |
7 | 6pos | ⊢ 0 < 6 | |
8 | 6 7 | gt0ne0ii | ⊢ 6 ≠ 0 |
9 | 1 2 5 8 | subreci | ⊢ ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( ( 6 − 5 ) / ( 5 · 6 ) ) |
10 | ax-1cn | ⊢ 1 ∈ ℂ | |
11 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
12 | 2 1 10 11 | subaddrii | ⊢ ( 6 − 5 ) = 1 |
13 | 6t5e30 | ⊢ ( 6 · 5 ) = ; 3 0 | |
14 | 2 1 13 | mulcomli | ⊢ ( 5 · 6 ) = ; 3 0 |
15 | 12 14 | oveq12i | ⊢ ( ( 6 − 5 ) / ( 5 · 6 ) ) = ( 1 / ; 3 0 ) |
16 | 9 15 | eqtri | ⊢ ( ( 1 / 5 ) − ( 1 / 6 ) ) = ( 1 / ; 3 0 ) |