Metamath Proof Explorer


Theorem 5recm6rec

Description: One fifth minus one sixth. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Assertion 5recm6rec 1 5 1 6 = 1 30

Proof

Step Hyp Ref Expression
1 5cn 5
2 6cn 6
3 5re 5
4 5pos 0 < 5
5 3 4 gt0ne0ii 5 0
6 6re 6
7 6pos 0 < 6
8 6 7 gt0ne0ii 6 0
9 1 2 5 8 subreci 1 5 1 6 = 6 5 5 6
10 ax-1cn 1
11 5p1e6 5 + 1 = 6
12 2 1 10 11 subaddrii 6 5 = 1
13 6t5e30 6 5 = 30
14 2 1 13 mulcomli 5 6 = 30
15 12 14 oveq12i 6 5 5 6 = 1 30
16 9 15 eqtri 1 5 1 6 = 1 30