Metamath Proof Explorer


Theorem 8mod5e3

Description: 8 modulo 5 is 3. (Contributed by AV, 20-Nov-2025)

Ref Expression
Assertion 8mod5e3 ( 8 mod 5 ) = 3

Proof

Step Hyp Ref Expression
1 5p3e8 ( 5 + 3 ) = 8
2 1 eqcomi 8 = ( 5 + 3 )
3 2 oveq1i ( 8 mod 5 ) = ( ( 5 + 3 ) mod 5 )
4 3nn0 3 ∈ ℕ0
5 5nn 5 ∈ ℕ
6 3lt5 3 < 5
7 addmodid ( ( 3 ∈ ℕ0 ∧ 5 ∈ ℕ ∧ 3 < 5 ) → ( ( 5 + 3 ) mod 5 ) = 3 )
8 4 5 6 7 mp3an ( ( 5 + 3 ) mod 5 ) = 3
9 3 8 eqtri ( 8 mod 5 ) = 3