Metamath Proof Explorer


Theorem 8mod5e3

Description: 8 modulo 5 is 3. (Contributed by AV, 20-Nov-2025)

Ref Expression
Assertion 8mod5e3
|- ( 8 mod 5 ) = 3

Proof

Step Hyp Ref Expression
1 5p3e8
 |-  ( 5 + 3 ) = 8
2 1 eqcomi
 |-  8 = ( 5 + 3 )
3 2 oveq1i
 |-  ( 8 mod 5 ) = ( ( 5 + 3 ) mod 5 )
4 3nn0
 |-  3 e. NN0
5 5nn
 |-  5 e. NN
6 3lt5
 |-  3 < 5
7 addmodid
 |-  ( ( 3 e. NN0 /\ 5 e. NN /\ 3 < 5 ) -> ( ( 5 + 3 ) mod 5 ) = 3 )
8 4 5 6 7 mp3an
 |-  ( ( 5 + 3 ) mod 5 ) = 3
9 3 8 eqtri
 |-  ( 8 mod 5 ) = 3