| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 2 |
1
|
mullidd |
|- ( M e. NN -> ( 1 x. M ) = M ) |
| 3 |
2
|
3ad2ant2 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( 1 x. M ) = M ) |
| 4 |
3
|
eqcomd |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M = ( 1 x. M ) ) |
| 5 |
4
|
oveq1d |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( M + A ) = ( ( 1 x. M ) + A ) ) |
| 6 |
5
|
oveq1d |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = ( ( ( 1 x. M ) + A ) mod M ) ) |
| 7 |
|
1zzd |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> 1 e. ZZ ) |
| 8 |
|
nnrp |
|- ( M e. NN -> M e. RR+ ) |
| 9 |
8
|
3ad2ant2 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M e. RR+ ) |
| 10 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 11 |
10
|
rexrd |
|- ( A e. NN0 -> A e. RR* ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A e. RR* ) |
| 13 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> 0 <_ A ) |
| 15 |
|
simp3 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A < M ) |
| 16 |
|
0xr |
|- 0 e. RR* |
| 17 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 18 |
17
|
rexrd |
|- ( M e. NN -> M e. RR* ) |
| 19 |
18
|
3ad2ant2 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> M e. RR* ) |
| 20 |
|
elico1 |
|- ( ( 0 e. RR* /\ M e. RR* ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR* /\ 0 <_ A /\ A < M ) ) ) |
| 21 |
16 19 20
|
sylancr |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( A e. ( 0 [,) M ) <-> ( A e. RR* /\ 0 <_ A /\ A < M ) ) ) |
| 22 |
12 14 15 21
|
mpbir3and |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> A e. ( 0 [,) M ) ) |
| 23 |
|
muladdmodid |
|- ( ( 1 e. ZZ /\ M e. RR+ /\ A e. ( 0 [,) M ) ) -> ( ( ( 1 x. M ) + A ) mod M ) = A ) |
| 24 |
7 9 22 23
|
syl3anc |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( ( 1 x. M ) + A ) mod M ) = A ) |
| 25 |
6 24
|
eqtrd |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) |