Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
2 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
3 |
|
addcom |
|- ( ( A e. CC /\ M e. CC ) -> ( A + M ) = ( M + A ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. NN0 /\ M e. NN ) -> ( A + M ) = ( M + A ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( A + M ) = ( M + A ) ) |
6 |
5
|
oveq1d |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = ( ( M + A ) mod M ) ) |
7 |
|
addmodid |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) |
8 |
6 7
|
eqtrd |
|- ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = A ) |